|
|
|
from text_processing import split_into_words, Word |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from pprint import pprint |
|
|
|
|
|
|
|
def load_model_and_tokenizer(model_name): |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
return model, tokenizer, device |
|
|
|
def process_input_text(input_text, tokenizer, device): |
|
inputs = tokenizer(input_text, return_tensors="pt").to(device) |
|
input_ids = inputs["input_ids"] |
|
return inputs, input_ids |
|
|
|
def calculate_log_probabilities(model, tokenizer, inputs, input_ids): |
|
with torch.no_grad(): |
|
outputs = model(**inputs, labels=input_ids) |
|
logits = outputs.logits[0, :-1, :] |
|
log_probs = torch.log_softmax(logits, dim=-1) |
|
token_log_probs = log_probs[range(log_probs.shape[0]), input_ids[0][1:]] |
|
tokens = tokenizer.convert_ids_to_tokens(input_ids[0]) |
|
return list(zip(tokens[1:], token_log_probs.tolist())) |
|
|
|
def generate_replacements(model, tokenizer, prefix, device, num_samples=5): |
|
input_context = tokenizer(prefix, return_tensors="pt").to(device) |
|
input_ids = input_context["input_ids"] |
|
new_words = [] |
|
for _ in range(num_samples): |
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
input_ids=input_ids, |
|
max_length=input_ids.shape[-1] + 5, |
|
num_return_sequences=1, |
|
temperature=1.0, |
|
top_k=50, |
|
top_p=0.95, |
|
do_sample=True |
|
) |
|
generated_ids = outputs[0][input_ids.shape[-1]:] |
|
new_word = tokenizer.decode(generated_ids, skip_special_tokens=True).split()[0] |
|
new_words.append(new_word) |
|
return new_words |
|
|
|
|
|
model_name = "mistralai/Mistral-7B-v0.1" |
|
model, tokenizer, device = load_model_and_tokenizer(model_name) |
|
|
|
input_text = "He asked me to prostrate myself before the king, but I rifused." |
|
inputs, input_ids = process_input_text(input_text, tokenizer, device) |
|
|
|
result = calculate_log_probabilities(model, tokenizer, inputs, input_ids) |
|
|
|
words = split_into_words([token for token, _ in result], [logprob for _, logprob in result]) |
|
log_prob_threshold = -5.0 |
|
low_prob_words = [word for word in words if word.logprob < log_prob_threshold] |
|
|
|
|
|
|
|
for word in low_prob_words: |
|
prefix_index = word.first_token_index |
|
prefix_tokens = [token for token, _ in result][:prefix_index + 1] |
|
prefix = tokenizer.convert_tokens_to_string(prefix_tokens) |
|
replacements = generate_replacements(model, tokenizer, prefix, device) |
|
print(f"Original word: {word.text}, Log Probability: {word.logprob:.4f}") |
|
print(f"Proposed replacements: {replacements}") |
|
print() |
|
|