#%% from text_processing import split_into_words, Word import torch from transformers import AutoTokenizer, AutoModelForCausalLM from pprint import pprint #%% def load_model_and_tokenizer(model_name): tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) return model, tokenizer, device def process_input_text(input_text, tokenizer, device): inputs = tokenizer(input_text, return_tensors="pt").to(device) input_ids = inputs["input_ids"] return inputs, input_ids def calculate_log_probabilities(model, tokenizer, inputs, input_ids): with torch.no_grad(): outputs = model(**inputs, labels=input_ids) logits = outputs.logits[0, :-1, :] log_probs = torch.log_softmax(logits, dim=-1) token_log_probs = log_probs[range(log_probs.shape[0]), input_ids[0][1:]] tokens = tokenizer.convert_ids_to_tokens(input_ids[0]) return list(zip(tokens[1:], token_log_probs.tolist())) def generate_replacements(model, tokenizer, prefix, device, num_samples=5): input_context = tokenizer(prefix, return_tensors="pt").to(device) input_ids = input_context["input_ids"] new_words = [] for _ in range(num_samples): with torch.no_grad(): outputs = model.generate( input_ids=input_ids, max_length=input_ids.shape[-1] + 5, num_return_sequences=1, temperature=1.0, top_k=50, top_p=0.95, do_sample=True ) generated_ids = outputs[0][input_ids.shape[-1]:] new_word = tokenizer.decode(generated_ids, skip_special_tokens=True).split()[0] new_words.append(new_word) return new_words #%% model_name = "mistralai/Mistral-7B-v0.1" model, tokenizer, device = load_model_and_tokenizer(model_name) input_text = "He asked me to prostrate myself before the king, but I rifused." inputs, input_ids = process_input_text(input_text, tokenizer, device) result = calculate_log_probabilities(model, tokenizer, inputs, input_ids) words = split_into_words([token for token, _ in result], [logprob for _, logprob in result]) log_prob_threshold = -5.0 low_prob_words = [word for word in words if word.logprob < log_prob_threshold] #%% for word in low_prob_words: prefix_index = word.first_token_index prefix_tokens = [token for token, _ in result][:prefix_index + 1] prefix = tokenizer.convert_tokens_to_string(prefix_tokens) replacements = generate_replacements(model, tokenizer, prefix, device) print(f"Original word: {word.text}, Log Probability: {word.logprob:.4f}") print(f"Proposed replacements: {replacements}") print()