|
from expand import * |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast, BatchEncoding |
|
from dataclasses import dataclass |
|
from completions import prepare_inputs, find_next_tokens |
|
|
|
type Tokenizer = PreTrainedTokenizer | PreTrainedTokenizerFast |
|
|
|
@dataclass |
|
class ExpanderOneBatchLLM: |
|
model: PreTrainedModel |
|
tokenizer: Tokenizer |
|
|
|
def expand(self, batch: Batch) -> ExpansionOneResultBatch: |
|
inputs = prepare_inputs([s.get_all_tokens() for s in batch.items], self.tokenizer, self.model.device) |
|
next_tokens = find_next_tokens(self.model, inputs, self.tokenizer) |
|
results = [] |
|
for s, next_tokens in zip(batch.items, next_tokens): |
|
expansions = [Expansion(token=token, cost=cost) for token, cost in next_tokens] |
|
results.append(ExpansionOneResult(series=s, expansions=expansions)) |
|
return ExpansionOneResultBatch(items=results) |
|
|
|
def create_stopping_criterion_llm(tokenizer: Tokenizer) -> Callable[[Series, Expansion], bool]: |
|
def stopping_criterion(series: Series, expansion: Expansion) -> bool: |
|
d = default_completion_criterion(series, expansion) |
|
if d: |
|
return d |
|
token_str = tokenizer.decode([expansion.token]) |
|
starts_with_space = token_str.startswith(" ") |
|
print(f"-----{token_str}-----, {starts_with_space=}") |
|
is_first_token = len(series.expansions) == 0 |
|
if is_first_token and not starts_with_space: |
|
return True |
|
if not is_first_token and starts_with_space: |
|
return True |
|
return False |
|
return stopping_criterion |
|
|