from expand import * from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast, BatchEncoding from dataclasses import dataclass from completions import prepare_inputs, find_next_tokens type Tokenizer = PreTrainedTokenizer | PreTrainedTokenizerFast @dataclass class ExpanderOneBatchLLM: model: PreTrainedModel tokenizer: Tokenizer def expand(self, batch: Batch) -> ExpansionOneResultBatch: inputs = prepare_inputs([s.get_all_tokens() for s in batch.items], self.tokenizer, self.model.device) next_tokens = find_next_tokens(self.model, inputs, self.tokenizer) results = [] for s, next_tokens in zip(batch.items, next_tokens): expansions = [Expansion(token=token, cost=cost) for token, cost in next_tokens] results.append(ExpansionOneResult(series=s, expansions=expansions)) return ExpansionOneResultBatch(items=results) def create_stopping_criterion_llm(tokenizer: Tokenizer) -> Callable[[Series, Expansion], bool]: def stopping_criterion(series: Series, expansion: Expansion) -> bool: d = default_completion_criterion(series, expansion) if d: return d token_str = tokenizer.decode([expansion.token]) starts_with_space = token_str.startswith(" ") print(f"-----{token_str}-----, {starts_with_space=}") is_first_token = len(series.expansions) == 0 if is_first_token and not starts_with_space: return True if not is_first_token and starts_with_space: return True return False return stopping_criterion