mdik1's picture
Update app.py
da0e299 verified
import streamlit as st
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report, accuracy_score
import nbformat as nbf
import io
import sqlite3
from io import StringIO
import os
# Constants
DB_PATH = "db/database.db"
TEMP_DIR = "temp/"
# Ensure directories exist
os.makedirs(os.path.dirname(DB_PATH), exist_ok=True)
os.makedirs(TEMP_DIR, exist_ok=True)
# Initialize SQLite database
def init_db():
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS datasets (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL,
content TEXT NOT NULL
)
""")
conn.commit()
conn.close()
# Save dataset to SQLite
def save_dataset_to_db(name, content):
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute("INSERT INTO datasets (name, content) VALUES (?, ?)", (name, content))
conn.commit()
conn.close()
# Fetch all datasets from SQLite
def get_datasets():
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute("SELECT id, name FROM datasets")
datasets = cursor.fetchall()
conn.close()
return datasets
# Load dataset by ID
def load_dataset_from_db(dataset_id):
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute("SELECT content FROM datasets WHERE id = ?", (dataset_id,))
content = cursor.fetchone()
conn.close()
if content:
return StringIO(content[0])
return None
# Initialize database
init_db()
# Function to detect problem type
def detect_problem_type(df, target_column):
if target_column not in df.columns:
return "Error: Target column not found in the dataset."
df_clean = df.dropna(subset=[target_column])
unique_values = df_clean[target_column].nunique()
if unique_values == 2:
return "binary_classification"
elif unique_values > 2:
return "multiclass_classification"
else:
return "Error: Invalid target column (not enough unique values)."
# Function to generate notebook content
def generate_notebook_code(csv_path, target_column, problem_type):
notebook = nbf.v4.new_notebook()
code = f"""
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report, accuracy_score
# Load Dataset
df = pd.read_csv("{csv_path}")
target_column = "{target_column}"
# Display the first few rows
print(df.head())
# Check for missing values
print("Missing Values:\\n", df.isnull().sum())
# Encode categorical columns
categorical_cols = df.select_dtypes(include=['object']).columns
for col in categorical_cols:
df[col] = LabelEncoder().fit_transform(df[col])
# Fill missing values with median
df.fillna(df.median(), inplace=True)
# Split data into features and target
X = df.drop(columns=[target_column])
y = df[target_column]
# Standardize numeric columns
scaler = StandardScaler()
X = scaler.fit_transform(X)
# Train/Test Split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train Models
models = []
if "{problem_type}" in ["binary_classification", "multiclass_classification"]:
models.append(("Random Forest", RandomForestClassifier()))
models.append(("Logistic Regression", LogisticRegression()))
models.append(("SVM", SVC()))
models.append(("Decision Tree", DecisionTreeClassifier()))
# Model Evaluation
results = []
for model_name, model in models:
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
results.append((model_name, accuracy))
print("Model Performance:")
for model_name, accuracy in results:
print(f"{model_name}: {accuracy}")
"""
notebook.cells.append(nbf.v4.new_code_cell(code))
return notebook
# Streamlit app
st.title("Automated Data Science App")
st.write("Upload a CSV file and specify the target column to automatically process and train models.")
# File upload
uploaded_file = st.file_uploader("Upload your CSV file", type="csv")
target_column = st.text_input("Enter the target column name")
if uploaded_file and target_column:
try:
df = pd.read_csv(uploaded_file)
st.write("Dataset Preview:")
st.write(df.head())
st.subheader("Missing Values")
st.write(df.isnull().sum())
st.subheader("Basic Statistics")
st.write(df.describe())
problem_type = detect_problem_type(df, target_column)
if "Error" in problem_type:
st.error(problem_type)
else:
st.write(f"Detected Problem Type: {problem_type}")
# Save dataset to database
save_dataset_to_db(uploaded_file.name, uploaded_file.getvalue().decode("utf-8"))
categorical_cols = df.select_dtypes(include=['object']).columns
for col in categorical_cols:
df[col] = LabelEncoder().fit_transform(df[col])
df.fillna(df.median(), inplace=True)
X = df.drop(columns=[target_column])
y = df[target_column]
scaler = StandardScaler()
X = scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
models = [
("Random Forest", RandomForestClassifier()),
("Logistic Regression", LogisticRegression()),
("SVM", SVC()),
("Decision Tree", DecisionTreeClassifier())
]
results = []
for model_name, model in models:
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
results.append((model_name, accuracy))
# Display results in a table
st.subheader("Model Performance")
results_df = pd.DataFrame(results, columns=["Model Name", "Accuracy"])
st.write(results_df)
# Display the classification report with proper formatting
st.subheader("Classification Report")
report = classification_report(y_test, y_pred)
st.code(report) # st.text ensures the report is displayed with proper formatting
feature_importances = model.feature_importances_ if hasattr(model, "feature_importances_") else None
if feature_importances is not None:
important_features = pd.Series(feature_importances, index=df.drop(columns=[target_column]).columns)
important_features = important_features.sort_values(ascending=False).head(5)
st.subheader("Important Features")
st.write(important_features)
st.subheader("Visualizations")
for feature in important_features.index:
st.write(f"Box Plot for {feature}")
fig, ax = plt.subplots(figsize=(8, 6))
sns.boxplot(x=y, y=df[feature], ax=ax)
st.pyplot(fig)
st.write(f"Histogram for {feature}")
fig, ax = plt.subplots(figsize=(8, 6))
sns.histplot(df[feature], kde=True, bins=30, ax=ax)
st.pyplot(fig)
temp_csv_path = os.path.join(TEMP_DIR, uploaded_file.name)
with open(temp_csv_path, "w") as f:
f.write(uploaded_file.getvalue().decode("utf-8"))
notebook = generate_notebook_code(temp_csv_path, target_column, problem_type)
notebook_buffer = io.StringIO()
nbf.write(notebook, notebook_buffer)
notebook_buffer.seek(0)
notebook_content = notebook_buffer.getvalue()
st.download_button(
label="Download Code Notebook",
data=notebook_content,
file_name="data_science_pipeline.ipynb",
mime="application/json"
)
except Exception as e:
st.error(f"An error occurred: {e}")