File size: 8,726 Bytes
da0e299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import streamlit as st
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report, accuracy_score
import nbformat as nbf
import io
import sqlite3
from io import StringIO
import os

# Constants
DB_PATH = "db/database.db"
TEMP_DIR = "temp/"

# Ensure directories exist
os.makedirs(os.path.dirname(DB_PATH), exist_ok=True)
os.makedirs(TEMP_DIR, exist_ok=True)

# Initialize SQLite database
def init_db():
    conn = sqlite3.connect(DB_PATH)
    cursor = conn.cursor()
    cursor.execute("""
        CREATE TABLE IF NOT EXISTS datasets (
            id INTEGER PRIMARY KEY AUTOINCREMENT,
            name TEXT NOT NULL,
            content TEXT NOT NULL
        )
    """)
    conn.commit()
    conn.close()

# Save dataset to SQLite
def save_dataset_to_db(name, content):
    conn = sqlite3.connect(DB_PATH)
    cursor = conn.cursor()
    cursor.execute("INSERT INTO datasets (name, content) VALUES (?, ?)", (name, content))
    conn.commit()
    conn.close()

# Fetch all datasets from SQLite
def get_datasets():
    conn = sqlite3.connect(DB_PATH)
    cursor = conn.cursor()
    cursor.execute("SELECT id, name FROM datasets")
    datasets = cursor.fetchall()
    conn.close()
    return datasets

# Load dataset by ID
def load_dataset_from_db(dataset_id):
    conn = sqlite3.connect(DB_PATH)
    cursor = conn.cursor()
    cursor.execute("SELECT content FROM datasets WHERE id = ?", (dataset_id,))
    content = cursor.fetchone()
    conn.close()
    if content:
        return StringIO(content[0])
    return None

# Initialize database
init_db()

# Function to detect problem type
def detect_problem_type(df, target_column):
    if target_column not in df.columns:
        return "Error: Target column not found in the dataset."

    df_clean = df.dropna(subset=[target_column])
    unique_values = df_clean[target_column].nunique()
    if unique_values == 2:
        return "binary_classification"
    elif unique_values > 2:
        return "multiclass_classification"
    else:
        return "Error: Invalid target column (not enough unique values)."

# Function to generate notebook content
def generate_notebook_code(csv_path, target_column, problem_type):
    notebook = nbf.v4.new_notebook()
    code = f"""
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report, accuracy_score

# Load Dataset
df = pd.read_csv("{csv_path}")
target_column = "{target_column}"

# Display the first few rows
print(df.head())

# Check for missing values
print("Missing Values:\\n", df.isnull().sum())

# Encode categorical columns
categorical_cols = df.select_dtypes(include=['object']).columns
for col in categorical_cols:
    df[col] = LabelEncoder().fit_transform(df[col])

# Fill missing values with median
df.fillna(df.median(), inplace=True)

# Split data into features and target
X = df.drop(columns=[target_column])
y = df[target_column]

# Standardize numeric columns
scaler = StandardScaler()
X = scaler.fit_transform(X)

# Train/Test Split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Train Models
models = []
if "{problem_type}" in ["binary_classification", "multiclass_classification"]:
    models.append(("Random Forest", RandomForestClassifier()))
    models.append(("Logistic Regression", LogisticRegression()))
    models.append(("SVM", SVC()))
    models.append(("Decision Tree", DecisionTreeClassifier()))

# Model Evaluation
results = []
for model_name, model in models:
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)
    results.append((model_name, accuracy))

print("Model Performance:")
for model_name, accuracy in results:
    print(f"{model_name}: {accuracy}")
    """
    notebook.cells.append(nbf.v4.new_code_cell(code))
    return notebook

# Streamlit app
st.title("Automated Data Science App")
st.write("Upload a CSV file and specify the target column to automatically process and train models.")

# File upload
uploaded_file = st.file_uploader("Upload your CSV file", type="csv")
target_column = st.text_input("Enter the target column name")

if uploaded_file and target_column:
    try:
        df = pd.read_csv(uploaded_file)
        st.write("Dataset Preview:")
        st.write(df.head())

        st.subheader("Missing Values")
        st.write(df.isnull().sum())

        st.subheader("Basic Statistics")
        st.write(df.describe())

        problem_type = detect_problem_type(df, target_column)
        if "Error" in problem_type:
            st.error(problem_type)
        else:
            st.write(f"Detected Problem Type: {problem_type}")

            # Save dataset to database
            save_dataset_to_db(uploaded_file.name, uploaded_file.getvalue().decode("utf-8"))

            categorical_cols = df.select_dtypes(include=['object']).columns
            for col in categorical_cols:
                df[col] = LabelEncoder().fit_transform(df[col])

            df.fillna(df.median(), inplace=True)
            X = df.drop(columns=[target_column])
            y = df[target_column]

            scaler = StandardScaler()
            X = scaler.fit_transform(X)

            X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

            models = [
                ("Random Forest", RandomForestClassifier()),
                ("Logistic Regression", LogisticRegression()),
                ("SVM", SVC()),
                ("Decision Tree", DecisionTreeClassifier())
            ]

            results = []
            for model_name, model in models:
                model.fit(X_train, y_train)
                y_pred = model.predict(X_test)
                accuracy = accuracy_score(y_test, y_pred)
                results.append((model_name, accuracy))

            # Display results in a table
            st.subheader("Model Performance")
            results_df = pd.DataFrame(results, columns=["Model Name", "Accuracy"])
            st.write(results_df)

            # Display the classification report with proper formatting
            st.subheader("Classification Report")
            report = classification_report(y_test, y_pred)
            st.code(report)  # st.text ensures the report is displayed with proper formatting

            feature_importances = model.feature_importances_ if hasattr(model, "feature_importances_") else None
            if feature_importances is not None:
                important_features = pd.Series(feature_importances, index=df.drop(columns=[target_column]).columns)
                important_features = important_features.sort_values(ascending=False).head(5)

                st.subheader("Important Features")
                st.write(important_features)

                st.subheader("Visualizations")
                for feature in important_features.index:
                    st.write(f"Box Plot for {feature}")
                    fig, ax = plt.subplots(figsize=(8, 6))
                    sns.boxplot(x=y, y=df[feature], ax=ax)
                    st.pyplot(fig)

                    st.write(f"Histogram for {feature}")
                    fig, ax = plt.subplots(figsize=(8, 6))
                    sns.histplot(df[feature], kde=True, bins=30, ax=ax)
                    st.pyplot(fig)

            temp_csv_path = os.path.join(TEMP_DIR, uploaded_file.name)
            with open(temp_csv_path, "w") as f:
                f.write(uploaded_file.getvalue().decode("utf-8"))

            notebook = generate_notebook_code(temp_csv_path, target_column, problem_type)
            notebook_buffer = io.StringIO()
            nbf.write(notebook, notebook_buffer)
            notebook_buffer.seek(0)
            notebook_content = notebook_buffer.getvalue()

            st.download_button(
                label="Download Code Notebook",
                data=notebook_content,
                file_name="data_science_pipeline.ipynb",
                mime="application/json"
            )

    except Exception as e:
        st.error(f"An error occurred: {e}")