Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
import random | |
import spaces #[uncomment to use ZeroGPU] | |
from diffusers import DiffusionPipeline | |
from controlnet_aux import CannyDetector | |
from huggingface_hub import login | |
import torch | |
import subprocess | |
from groq import Groq | |
import base64 | |
import os | |
login(token=os.environ.get("HF_API_KEY")) | |
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True) | |
# Load FLUX image generator | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_repo_id = "black-forest-labs/FLUX.1-schnell" # Replace to the model you would like to use | |
flat_lora_path = "matteomarjanovic/flatsketcher" | |
canny_lora_path = "black-forest-labs/FLUX.1-Canny-dev-lora" | |
flat_weigths_file = "lora.safetensors" | |
canny_weigths_file = "flux1-canny-dev-lora.safetensors" | |
processor = CannyDetector() | |
if torch.cuda.is_available(): | |
torch_dtype = torch.float16 | |
else: | |
torch_dtype = torch.float32 | |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) | |
pipe = pipe.to(device) | |
pipe.load_lora_weights(flat_lora_path, weight_name=flat_weigths_file, adapter_name="flat") | |
pipe.load_lora_weights(canny_lora_path, weight_name=canny_weigths_file, adapter_name="canny") | |
pipe.set_adapters(["flat", "canny"], adapter_weights=[0.7, 0.7]) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def encode_image(image_path): | |
with open(image_path, "rb") as image_file: | |
return base64.b64encode(image_file.read()).decode('utf-8') | |
# @spaces.GPU #[uncomment to use ZeroGPU] | |
# def infer( | |
# prompt, | |
# progress=gr.Progress(track_tqdm=True), | |
# ): | |
# # seed = random.randint(0, MAX_SEED) | |
# # generator = torch.Generator().manual_seed(seed) | |
# image = pipe( | |
# prompt=prompt, | |
# guidance_scale=0., | |
# num_inference_steps=4, | |
# width=1420, | |
# height=1080, | |
# max_sequence_length=256, | |
# ).images[0] | |
# return image | |
#[uncomment to use ZeroGPU] | |
def generate_description_fn( | |
image, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
base64_image = encode_image(image) | |
client = Groq( | |
api_key=os.environ.get("GROQ_API_KEY"), | |
) | |
chat_completion = client.chat.completions.create( | |
messages=[ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "text", | |
"text": """ | |
I want you to imagine how the technical flat sketch of the garment you see in the picture would look like, both front and back descriptions are mandatory, and describe it to me in rich details, in one paragraph. Don't add any additional comment. | |
The style of the result should look somewhat like the following example: | |
The technical flat sketch of the dress would depict a midi-length, off-the-shoulder design with a smocked bodice and short puff sleeves that have elasticized cuffs. The elastic neckline sits straight across the chest and back, ensuring a secure fit. The bodice transitions into a flowy, tiered skirt with three evenly spaced gathered panels, creating soft volume. The back view mirrors the front, maintaining the smocked fit and tiered skirt without visible closures, suggesting a pullover style. Elasticized areas would be marked with textured lines, while the gathers and drape would be indicated through subtle curved strokes, ensuring clarity in construction details. | |
""" | |
}, | |
{ | |
"type": "image_url", | |
"image_url": { | |
"url": f"data:image/jpeg;base64,{base64_image}", | |
}, | |
}, | |
], | |
} | |
], | |
model="llama-3.2-11b-vision-preview", | |
) | |
prompt = chat_completion.choices[0].message.content + " In the style of FLTSKC" | |
control_image = processor( | |
image, | |
low_threshold=50, | |
high_threshold=200, | |
detect_resolution=1024, | |
image_resolution=1024 | |
) | |
image = pipe( | |
prompt=prompt, | |
control_image=control_image, | |
guidance_scale=0., | |
num_inference_steps=4, | |
width=1420, | |
height=1080, | |
max_sequence_length=256, | |
).images[0] | |
return prompt, image | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
.gradio-container { | |
background-color: oklch(98% 0 0); | |
} | |
.btn-primary { | |
background-color: #422ad5; | |
outline-color: #422ad5; | |
} | |
""" | |
# generated_prompt = "" | |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: | |
# gr.Markdown("# Draptic: from garment image to technical flat sketch") | |
with gr.Row(): | |
with gr.Column(elem_id="col-input-image"): | |
# gr.Markdown(" ## Drop your image here") | |
input_image = gr.Image(type="filepath") | |
with gr.Column(elem_id="col-container"): | |
generate_button = gr.Button("Generate flat sketch", scale=0, variant="primary", elem_classes="btn btn-primary") | |
result = gr.Image(label="Result", show_label=False) | |
if result: | |
gr.Markdown("## Description of the garment:") | |
generated_prompt = gr.Markdown("") | |
gr.on( | |
triggers=[generate_button.click], | |
fn=generate_description_fn, | |
inputs=[ | |
input_image, | |
], | |
outputs=[generated_prompt, result], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |