Spaces:
Running
Running
File size: 5,574 Bytes
8d691c3 b79e3f7 8d691c3 421fe99 5b3343a 8d691c3 a15d459 166d9fd e221206 a15d459 5b3343a a15d459 8d691c3 21e5fc0 8d691c3 b79e3f7 ae0e195 8d691c3 ae0e195 714fad0 ae0e195 8d691c3 166d9fd 21e5fc0 8d691c3 db8ace2 099a349 db8ace2 099a349 db8ace2 099a349 21e5fc0 166d9fd e221206 166d9fd f792238 099a349 f792238 166d9fd fd4ed34 ae0e195 fd4ed34 06b92a6 fd4ed34 21e5fc0 8d691c3 30beb50 8bf5da3 8d691c3 30beb50 8749689 21e5fc0 f599c40 db8ace2 36abcb2 db8ace2 166d9fd 36abcb2 fd7010a 8d691c3 36abcb2 5097863 1b9a64c db8ace2 099a349 66303da 21e5fc0 36abcb2 fd4ed34 36abcb2 8d691c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import gradio as gr
import numpy as np
import random
import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
from controlnet_aux import CannyDetector
from huggingface_hub import login
import torch
import subprocess
from groq import Groq
import base64
import os
login(token=os.environ.get("HF_API_KEY"))
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
# Load FLUX image generator
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "black-forest-labs/FLUX.1-schnell" # Replace to the model you would like to use
flat_lora_path = "matteomarjanovic/flatsketcher"
canny_lora_path = "black-forest-labs/FLUX.1-Canny-dev-lora"
flat_weigths_file = "lora.safetensors"
canny_weigths_file = "flux1-canny-dev-lora.safetensors"
processor = CannyDetector()
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
pipe.load_lora_weights(flat_lora_path, weight_name=flat_weigths_file, adapter_name="flat")
pipe.load_lora_weights(canny_lora_path, weight_name=canny_weigths_file, adapter_name="canny")
pipe.set_adapters(["flat", "canny"], adapter_weights=[0.7, 0.7])
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
# @spaces.GPU #[uncomment to use ZeroGPU]
# def infer(
# prompt,
# progress=gr.Progress(track_tqdm=True),
# ):
# # seed = random.randint(0, MAX_SEED)
# # generator = torch.Generator().manual_seed(seed)
# image = pipe(
# prompt=prompt,
# guidance_scale=0.,
# num_inference_steps=4,
# width=1420,
# height=1080,
# max_sequence_length=256,
# ).images[0]
# return image
@spaces.GPU #[uncomment to use ZeroGPU]
def generate_description_fn(
image,
progress=gr.Progress(track_tqdm=True),
):
base64_image = encode_image(image)
client = Groq(
api_key=os.environ.get("GROQ_API_KEY"),
)
chat_completion = client.chat.completions.create(
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": """
I want you to imagine how the technical flat sketch of the garment you see in the picture would look like, both front and back descriptions are mandatory, and describe it to me in rich details, in one paragraph. Don't add any additional comment.
The style of the result should look somewhat like the following example:
The technical flat sketch of the dress would depict a midi-length, off-the-shoulder design with a smocked bodice and short puff sleeves that have elasticized cuffs. The elastic neckline sits straight across the chest and back, ensuring a secure fit. The bodice transitions into a flowy, tiered skirt with three evenly spaced gathered panels, creating soft volume. The back view mirrors the front, maintaining the smocked fit and tiered skirt without visible closures, suggesting a pullover style. Elasticized areas would be marked with textured lines, while the gathers and drape would be indicated through subtle curved strokes, ensuring clarity in construction details.
"""
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}",
},
},
],
}
],
model="llama-3.2-11b-vision-preview",
)
prompt = chat_completion.choices[0].message.content + " In the style of FLTSKC"
control_image = processor(
image,
low_threshold=50,
high_threshold=200,
detect_resolution=1024,
image_resolution=1024
)
image = pipe(
prompt=prompt,
control_image=control_image,
guidance_scale=0.,
num_inference_steps=4,
width=1420,
height=1080,
max_sequence_length=256,
).images[0]
return prompt, image
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
.gradio-container {
background-color: oklch(98% 0 0);
}
.btn-primary {
background-color: #422ad5;
outline-color: #422ad5;
}
"""
# generated_prompt = ""
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
# gr.Markdown("# Draptic: from garment image to technical flat sketch")
with gr.Row():
with gr.Column(elem_id="col-input-image"):
# gr.Markdown(" ## Drop your image here")
input_image = gr.Image(type="filepath")
with gr.Column(elem_id="col-container"):
generate_button = gr.Button("Generate flat sketch", scale=0, variant="primary", elem_classes="btn btn-primary")
result = gr.Image(label="Result", show_label=False)
if result:
gr.Markdown("## Description of the garment:")
generated_prompt = gr.Markdown("")
gr.on(
triggers=[generate_button.click],
fn=generate_description_fn,
inputs=[
input_image,
],
outputs=[generated_prompt, result],
)
if __name__ == "__main__":
demo.launch()
|