Spaces:
Runtime error
Runtime error
File size: 11,108 Bytes
5ddef29 bab1e75 928dc00 9a2c75e 5ddef29 b33f45e 5ddef29 2dddeae 5ddef29 9a2c75e 5ddef29 9a2c75e 5ddef29 9a2c75e 5ddef29 9a2c75e 5ddef29 9a2c75e 5ddef29 9a2c75e 5ddef29 f429ce6 9a2c75e f429ce6 9a2c75e 5ddef29 9a2c75e 5ddef29 9a2c75e 8637ff9 9a2c75e 5ddef29 b33f45e b62f01b b33f45e 9a2c75e b62f01b 9a2c75e b62f01b 9a2c75e b62f01b 9a2c75e b62f01b b33f45e 9a2c75e b62f01b b33f45e b62f01b 9a2c75e b62f01b 5ddef29 b62f01b 9a2c75e 5ddef29 b33f45e 8637ff9 5ddef29 3bebd7a 79e5823 5ddef29 b33f45e 8637ff9 d49e1e5 5ddef29 8637ff9 98511b0 9a2c75e 810d812 98511b0 603da5b 98511b0 b62f01b 21e7f7c b62f01b 603da5b b62f01b 603da5b b62f01b 21e7f7c b62f01b 11e0886 b62f01b 7e45f55 3bebd7a b62f01b 32fb49d 5ddef29 603da5b b33f45e b62f01b 9a2c75e 8637ff9 9a2c75e 8637ff9 9a2c75e 8637ff9 603da5b 8637ff9 9a2c75e 8637ff9 9a2c75e 8637ff9 9a2c75e 8637ff9 9a2c75e 8637ff9 9a2c75e b33f45e 8637ff9 9a2c75e b62f01b 9a2c75e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import gradio as gr
import requests
import time
import json
import base64
import os
from io import BytesIO
import html
import re
from PIL import Image # Убедитесь, что PIL импортируется для работы с изображениями
class Prodia:
def __init__(self, api_key, base=None):
self.base = base or "https://api.prodia.com/v1"
self.headers = {
"X-Prodia-Key": api_key
}
def generate(self, params):
return self._post(f"{self.base}/sd/generate", params).json()
def transform(self, params):
return self._post(f"{self.base}/sd/transform", params).json()
def controlnet(self, params):
return self._post(f"{self.base}/sd/controlnet", params).json()
def get_job(self, job_id):
return self._get(f"{self.base}/job/{job_id}").json()
def wait(self, job):
job_result = job
while job_result['status'] not in ['succeeded', 'failed']:
time.sleep(0.25)
job_result = self.get_job(job['job'])
return job_result
def list_models(self):
return self._get(f"{self.base}/sd/models").json()
def list_samplers(self):
return self._get(f"{self.base}/sd/samplers").json()
# Изменение: добавлены повторные попытки при сбоях сети
def _post(self, url, params):
headers = {**self.headers, "Content-Type": "application/json"}
for _ in range(3):
try:
response = requests.post(url, headers=headers, data=json.dumps(params))
response.raise_for_status()
return response
except requests.exceptions.RequestException as e:
print(f"Request failed: {e}, retrying...")
time.sleep(1)
raise Exception("Failed after 3 attempts")
# Изменение: добавлены повторные попытки при сбоях сети
def _get(self, url):
for _ in range(3):
try:
response = requests.get(url, headers=self.headers)
response.raise_for_status()
return response
except requests.exceptions.RequestException as e:
print(f"Request failed: {e}, retrying...")
time.sleep(1)
raise Exception("Failed after 3 attempts")
def image_to_base64(image, format="PNG"):
buffered = BytesIO()
image.save(buffered, format=format)
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
return img_str
def remove_id_and_ext(text):
text = re.sub(r'\[.*\]$', '', text)
extension = text[-12:].strip()
if extension == "safetensors":
text = text[:-13]
elif extension == "ckpt":
text = text[:-4]
return text
# Изменение: оптимизация функции get_data
def get_data(text):
patterns = {
'prompt': r'(.*)',
'negative_prompt': r'Negative prompt: (.*)',
'steps': r'Steps: (\d+),',
'seed': r'Seed: (\d+),',
'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)',
'model': r'Model:\s*([^\s,]+)',
'cfg_scale': r'CFG scale:\s*([\d\.]+)',
'size': r'Size:\s*([0-9]+x[0-9]+)'
}
results = {key: re.search(pattern, text).group(1) if re.search(pattern, text) else None for key, pattern in patterns.items()}
if results['size']:
results['w'], results['h'] = map(int, results['size'].split("x"))
else:
results['w'], results['h'] = None, None
return results
# Изменение: оптимизация функции send_to_txt2img
def send_to_txt2img(image):
result = {tabs: gr.update(selected="t2i")}
try:
text = image.info['parameters']
data = get_data(text)
fields = ['prompt', 'negative_prompt', 'steps', 'seed', 'cfg_scale', 'w', 'h', 'sampler', 'model']
for field in fields:
result[field] = gr.update(value=data[field]) if data[field] is not None else gr.update()
return result
except Exception as e:
print(e)
return result
prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))
model_list = prodia_client.list_models()
model_names = {remove_id_and_ext(model_name): model_name for model_name in model_list}
def txt2img(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
result = prodia_client.generate({
"prompt": prompt,
"negative_prompt": negative_prompt,
"model": model,
"steps": steps,
"sampler": sampler,
"cfg_scale": cfg_scale,
"width": width,
"height": height,
"seed": seed
})
job = prodia_client.wait(result)
return job["imageUrl"]
def img2img(input_image, denoising, prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
result = prodia_client.transform({
"imageData": image_to_base64(input_image),
"denoising_strength": denoising,
"prompt": prompt,
"negative_prompt": negative_prompt,
"model": model,
"steps": steps,
"sampler": sampler,
"cfg_scale": cfg_scale,
"width": width,
"height": height,
"seed": seed
})
job = prodia_client.wait(result)
return job["imageUrl"]
css = """
#generate {
height: 100%;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column(scale=6):
model = gr.Dropdown(interactive=True, value="childrensStories_v1ToonAnime.safetensors [2ec7b88b]", show_label=True, label="Stable Diffusion Checkpoint", choices=prodia_client.list_models())
with gr.Column(scale=1):
gr.Markdown(elem_id="powered-by-prodia", value="AUTOMATIC1111 Stable Diffusion Web UI переделано masteroko.<br>Powered by [Prodia](https://prodia.com).<br>For more features and faster generation times check out our [API Docs](https://docs.prodia.com/reference/getting-started-guide).")
with gr.Tabs() as tabs:
with gr.Tab("txt2img", id='t2i'):
with gr.Row():
with gr.Column(scale=6, min_width=600):
prompt = gr.Textbox("nsfw", placeholder="Prompt", show_label=False, lines=3)
negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
with gr.Column():
text_button = gr.Button("Сгенерировать", variant='primary', elem_id="generate")
with gr.Row():
with gr.Column(scale=3):
with gr.Tab("Генерация"):
with gr.Row():
with gr.Column(scale=1):
sampler = gr.Dropdown(value="DPM++ 2M SDE Exponential", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers())
with gr.Column(scale=1):
steps = gr.Slider(label="количество обработок", minimum=1, maximum=100, value=20, step=1)
with gr.Row():
with gr.Column(scale=1):
width = gr.Slider(label="Ширина", maximum=1024, value=512, step=8)
height = gr.Slider(label="Высота", maximum=1024, value=512, step=8)
with gr.Column(scale=1):
batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
cfg_scale = gr.Slider(label="CFG Scale(степень фантазии ии)", minimum=1, maximum=20, value=7, step=1)
seed = gr.Number(label="Семя рандома", value=-1)
with gr.Column(scale=2):
image_output = gr.Image(value="https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png")
# Изменение: добавлен limit на одновременные запросы
text_button.click(txt2img, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed], outputs=image_output, concurrency_limit=1024)
with gr.Tab("img2img", id='i2i'):
with gr.Row():
with gr.Column(scale=6, min_width=600):
image = gr.Image(show_label=False)
prompt = gr.Textbox(placeholder="Prompt", show_label=False, lines=3)
negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3)
with gr.Column():
text_button = gr.Button("Трансформировать", variant='primary', elem_id="generate")
with gr.Row():
with gr.Column(scale=3):
with gr.Tab("Генерация"):
with gr.Row():
with gr.Column(scale=1):
sampler = gr.Dropdown(value="DPM++ 2M SDE Exponential", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers())
with gr.Column(scale=1):
steps = gr.Slider(label="количество обработок", minimum=1, maximum=100, value=20, step=1)
with gr.Row():
with gr.Column(scale=1):
width = gr.Slider(label="Ширина", maximum=1024, value=512, step=8)
height = gr.Slider(label="Высота", maximum=1024, value=512, step=8)
with gr.Column(scale=1):
batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
cfg_scale = gr.Slider(label="CFG Scale(степень фантазии ии)", minimum=1, maximum=20, value=7, step=1)
seed = gr.Number(label="Семя рандома", value=-1)
denoising = gr.Slider(label="Denoising", value=0.5)
with gr.Column(scale=2):
image_output = gr.Image(value="https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png")
# Изменение: добавлен limit на одновременные запросы
text_button.click(img2img, inputs=[image, denoising, prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed], outputs=image_output, concurrency_limit=1024)
# Запуск Gradio интерфейса
demo.launch()
|