Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,79 +7,72 @@ import os
|
|
7 |
from io import BytesIO
|
8 |
import html
|
9 |
import re
|
10 |
-
|
11 |
|
12 |
|
13 |
class Prodia:
|
14 |
def __init__(self, api_key, base=None):
|
15 |
-
self.base = base or "https://api.prodia.com/
|
16 |
self.headers = {
|
17 |
"X-Prodia-Key": api_key
|
18 |
}
|
19 |
-
|
20 |
def generate(self, params):
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
def transform(self, params):
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
def controlnet(self, params):
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
def get_job(self, job_id):
|
33 |
-
|
34 |
-
return response.json()
|
35 |
|
36 |
def wait(self, job):
|
37 |
job_result = job
|
38 |
-
|
39 |
while job_result['status'] not in ['succeeded', 'failed']:
|
40 |
time.sleep(0.25)
|
41 |
job_result = self.get_job(job['job'])
|
42 |
-
|
43 |
return job_result
|
44 |
|
45 |
def list_models(self):
|
46 |
-
|
47 |
-
return response.json()
|
48 |
|
49 |
def list_samplers(self):
|
50 |
-
|
51 |
-
return response.json()
|
52 |
|
|
|
53 |
def _post(self, url, params):
|
54 |
-
headers = {
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
65 |
def _get(self, url):
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
76 |
buffered = BytesIO()
|
77 |
-
image.save(buffered, format=
|
78 |
-
|
79 |
-
|
80 |
-
img_str = base64.b64encode(buffered.getvalue())
|
81 |
-
|
82 |
-
return img_str.decode('utf-8') # Convert bytes to string
|
83 |
|
84 |
|
85 |
def remove_id_and_ext(text):
|
@@ -92,68 +85,44 @@ def remove_id_and_ext(text):
|
|
92 |
return text
|
93 |
|
94 |
|
|
|
95 |
def get_data(text):
|
96 |
-
results = {}
|
97 |
patterns = {
|
98 |
'prompt': r'(.*)',
|
99 |
'negative_prompt': r'Negative prompt: (.*)',
|
100 |
'steps': r'Steps: (\d+),',
|
101 |
'seed': r'Seed: (\d+),',
|
102 |
-
'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)',
|
103 |
'model': r'Model:\s*([^\s,]+)',
|
104 |
'cfg_scale': r'CFG scale:\s*([\d\.]+)',
|
105 |
'size': r'Size:\s*([0-9]+x[0-9]+)'
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
results[key] = match.group(1)
|
111 |
-
else:
|
112 |
-
results[key] = None
|
113 |
-
if results['size'] is not None:
|
114 |
-
w, h = results['size'].split("x")
|
115 |
-
results['w'] = w
|
116 |
-
results['h'] = h
|
117 |
else:
|
118 |
-
results['w'] = None
|
119 |
-
results['h'] = None
|
120 |
return results
|
121 |
|
122 |
|
|
|
123 |
def send_to_txt2img(image):
|
124 |
-
|
125 |
result = {tabs: gr.update(selected="t2i")}
|
126 |
-
|
127 |
try:
|
128 |
text = image.info['parameters']
|
129 |
data = get_data(text)
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
result[seed] = gr.update(value=int(data['seed'])) if data['seed'] is not None else gr.update()
|
134 |
-
result[cfg_scale] = gr.update(value=float(data['cfg_scale'])) if data['cfg_scale'] is not None else gr.update()
|
135 |
-
result[width] = gr.update(value=int(data['w'])) if data['w'] is not None else gr.update()
|
136 |
-
result[height] = gr.update(value=int(data['h'])) if data['h'] is not None else gr.update()
|
137 |
-
result[sampler] = gr.update(value=data['sampler']) if data['sampler'] is not None else gr.update()
|
138 |
-
if model in model_names:
|
139 |
-
result[model] = gr.update(value=model_names[model])
|
140 |
-
else:
|
141 |
-
result[model] = gr.update()
|
142 |
return result
|
143 |
-
|
144 |
except Exception as e:
|
145 |
print(e)
|
146 |
-
|
147 |
return result
|
148 |
|
149 |
|
150 |
prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))
|
151 |
model_list = prodia_client.list_models()
|
152 |
-
model_names = {}
|
153 |
-
|
154 |
-
for model_name in model_list:
|
155 |
-
name_without_ext = remove_id_and_ext(model_name)
|
156 |
-
model_names[name_without_ext] = model_name
|
157 |
|
158 |
|
159 |
def txt2img(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
|
@@ -168,9 +137,7 @@ def txt2img(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, he
|
|
168 |
"height": height,
|
169 |
"seed": seed
|
170 |
})
|
171 |
-
|
172 |
job = prodia_client.wait(result)
|
173 |
-
|
174 |
return job["imageUrl"]
|
175 |
|
176 |
|
@@ -188,9 +155,7 @@ def img2img(input_image, denoising, prompt, negative_prompt, model, steps, sampl
|
|
188 |
"height": height,
|
189 |
"seed": seed
|
190 |
})
|
191 |
-
|
192 |
job = prodia_client.wait(result)
|
193 |
-
|
194 |
return job["imageUrl"]
|
195 |
|
196 |
|
@@ -203,7 +168,7 @@ css = """
|
|
203 |
with gr.Blocks(css=css) as demo:
|
204 |
with gr.Row():
|
205 |
with gr.Column(scale=6):
|
206 |
-
model = gr.Dropdown(interactive=True,value="childrensStories_v1ToonAnime.safetensors [2ec7b88b]", show_label=True, label="Stable Diffusion Checkpoint", choices=prodia_client.list_models())
|
207 |
|
208 |
with gr.Column(scale=1):
|
209 |
gr.Markdown(elem_id="powered-by-prodia", value="AUTOMATIC1111 Stable Diffusion Web UI переделано masteroko.<br>Powered by [Prodia](https://prodia.com).<br>For more features and faster generation times check out our [API Docs](https://docs.prodia.com/reference/getting-started-guide).")
|
@@ -242,86 +207,46 @@ with gr.Blocks(css=css) as demo:
|
|
242 |
with gr.Column(scale=2):
|
243 |
image_output = gr.Image(value="https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png")
|
244 |
|
245 |
-
|
246 |
-
|
247 |
|
248 |
with gr.Tab("img2img", id='i2i'):
|
249 |
with gr.Row():
|
250 |
with gr.Column(scale=6, min_width=600):
|
251 |
-
|
252 |
-
|
|
|
253 |
with gr.Column():
|
254 |
-
|
255 |
|
256 |
with gr.Row():
|
257 |
with gr.Column(scale=3):
|
258 |
with gr.Tab("Генерация"):
|
259 |
-
i2i_image_input = gr.Image(type="pil")
|
260 |
-
|
261 |
with gr.Row():
|
262 |
with gr.Column(scale=1):
|
263 |
-
|
264 |
|
265 |
with gr.Column(scale=1):
|
266 |
-
|
267 |
-
|
268 |
with gr.Row():
|
269 |
with gr.Column(scale=1):
|
270 |
-
|
271 |
-
|
272 |
|
273 |
with gr.Column(scale=1):
|
274 |
-
|
275 |
-
|
276 |
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
|
281 |
with gr.Column(scale=2):
|
282 |
-
|
283 |
-
|
284 |
-
i2i_text_button.click(img2img, inputs=[i2i_image_input, i2i_denoising, i2i_prompt, i2i_negative_prompt,
|
285 |
-
model, i2i_steps, i2i_sampler, i2i_cfg_scale, i2i_width, i2i_height,
|
286 |
-
i2i_seed], outputs=i2i_image_output, concurrency_limit=1024)
|
287 |
-
|
288 |
-
with gr.Tab("PNG Info"):
|
289 |
-
def plaintext_to_html(text, classname=None):
|
290 |
-
content = "<br>\n".join(html.escape(x) for x in text.split('\n'))
|
291 |
-
|
292 |
-
return f"<p class='{classname}'>{content}</p>" if classname else f"<p>{content}</p>"
|
293 |
-
|
294 |
-
|
295 |
-
def get_exif_data(image):
|
296 |
-
items = image.info
|
297 |
-
|
298 |
-
info = ''
|
299 |
-
for key, text in items.items():
|
300 |
-
info += f"""
|
301 |
-
<div>
|
302 |
-
<p><b>{plaintext_to_html(str(key))}</b></p>
|
303 |
-
<p>{plaintext_to_html(str(text))}</p>
|
304 |
-
</div>
|
305 |
-
""".strip()+"\n"
|
306 |
-
|
307 |
-
if len(info) == 0:
|
308 |
-
message = "Nothing found in the image."
|
309 |
-
info = f"<div><p>{message}<p></div>"
|
310 |
-
|
311 |
-
return info
|
312 |
-
|
313 |
-
with gr.Row():
|
314 |
-
with gr.Column():
|
315 |
-
image_input = gr.Image(type="pil")
|
316 |
-
|
317 |
-
with gr.Column():
|
318 |
-
exif_output = gr.HTML(label="EXIF Data")
|
319 |
-
send_to_txt2img_btn = gr.Button("копировать в данные в txt2img")
|
320 |
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
demo.queue(max_size=80, api_open=False).launch(max_threads=4096, show_api=False)
|
|
|
7 |
from io import BytesIO
|
8 |
import html
|
9 |
import re
|
10 |
+
from PIL import Image # Убедитесь, что PIL импортируется для работы с изображениями
|
11 |
|
12 |
|
13 |
class Prodia:
|
14 |
def __init__(self, api_key, base=None):
|
15 |
+
self.base = base or "https://api.prodia.com/v2"
|
16 |
self.headers = {
|
17 |
"X-Prodia-Key": api_key
|
18 |
}
|
19 |
+
|
20 |
def generate(self, params):
|
21 |
+
return self._post(f"{self.base}/sd/generate", params).json()
|
22 |
+
|
|
|
23 |
def transform(self, params):
|
24 |
+
return self._post(f"{self.base}/sd/transform", params).json()
|
25 |
+
|
|
|
26 |
def controlnet(self, params):
|
27 |
+
return self._post(f"{self.base}/sd/controlnet", params).json()
|
28 |
+
|
|
|
29 |
def get_job(self, job_id):
|
30 |
+
return self._get(f"{self.base}/job/{job_id}").json()
|
|
|
31 |
|
32 |
def wait(self, job):
|
33 |
job_result = job
|
|
|
34 |
while job_result['status'] not in ['succeeded', 'failed']:
|
35 |
time.sleep(0.25)
|
36 |
job_result = self.get_job(job['job'])
|
|
|
37 |
return job_result
|
38 |
|
39 |
def list_models(self):
|
40 |
+
return self._get(f"{self.base}/sd/models").json()
|
|
|
41 |
|
42 |
def list_samplers(self):
|
43 |
+
return self._get(f"{self.base}/sd/samplers").json()
|
|
|
44 |
|
45 |
+
# Изменение: добавлены повторные попытки при сбоях сети
|
46 |
def _post(self, url, params):
|
47 |
+
headers = {**self.headers, "Content-Type": "application/json"}
|
48 |
+
for _ in range(3):
|
49 |
+
try:
|
50 |
+
response = requests.post(url, headers=headers, data=json.dumps(params))
|
51 |
+
response.raise_for_status()
|
52 |
+
return response
|
53 |
+
except requests.exceptions.RequestException as e:
|
54 |
+
print(f"Request failed: {e}, retrying...")
|
55 |
+
time.sleep(1)
|
56 |
+
raise Exception("Failed after 3 attempts")
|
57 |
+
|
58 |
+
# Изменение: добавлены повторные попытки при сбоях сети
|
59 |
def _get(self, url):
|
60 |
+
for _ in range(3):
|
61 |
+
try:
|
62 |
+
response = requests.get(url, headers=self.headers)
|
63 |
+
response.raise_for_status()
|
64 |
+
return response
|
65 |
+
except requests.exceptions.RequestException as e:
|
66 |
+
print(f"Request failed: {e}, retrying...")
|
67 |
+
time.sleep(1)
|
68 |
+
raise Exception("Failed after 3 attempts")
|
69 |
+
|
70 |
+
|
71 |
+
def image_to_base64(image, format="PNG"):
|
72 |
buffered = BytesIO()
|
73 |
+
image.save(buffered, format=format)
|
74 |
+
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
75 |
+
return img_str
|
|
|
|
|
|
|
76 |
|
77 |
|
78 |
def remove_id_and_ext(text):
|
|
|
85 |
return text
|
86 |
|
87 |
|
88 |
+
# Изменение: оптимизация функции get_data
|
89 |
def get_data(text):
|
|
|
90 |
patterns = {
|
91 |
'prompt': r'(.*)',
|
92 |
'negative_prompt': r'Negative prompt: (.*)',
|
93 |
'steps': r'Steps: (\d+),',
|
94 |
'seed': r'Seed: (\d+),',
|
95 |
+
'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)',
|
96 |
'model': r'Model:\s*([^\s,]+)',
|
97 |
'cfg_scale': r'CFG scale:\s*([\d\.]+)',
|
98 |
'size': r'Size:\s*([0-9]+x[0-9]+)'
|
99 |
+
}
|
100 |
+
results = {key: re.search(pattern, text).group(1) if re.search(pattern, text) else None for key, pattern in patterns.items()}
|
101 |
+
if results['size']:
|
102 |
+
results['w'], results['h'] = map(int, results['size'].split("x"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
else:
|
104 |
+
results['w'], results['h'] = None, None
|
|
|
105 |
return results
|
106 |
|
107 |
|
108 |
+
# Изменение: оптимизация функции send_to_txt2img
|
109 |
def send_to_txt2img(image):
|
|
|
110 |
result = {tabs: gr.update(selected="t2i")}
|
|
|
111 |
try:
|
112 |
text = image.info['parameters']
|
113 |
data = get_data(text)
|
114 |
+
fields = ['prompt', 'negative_prompt', 'steps', 'seed', 'cfg_scale', 'w', 'h', 'sampler', 'model']
|
115 |
+
for field in fields:
|
116 |
+
result[field] = gr.update(value=data[field]) if data[field] is not None else gr.update()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
return result
|
|
|
118 |
except Exception as e:
|
119 |
print(e)
|
|
|
120 |
return result
|
121 |
|
122 |
|
123 |
prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))
|
124 |
model_list = prodia_client.list_models()
|
125 |
+
model_names = {remove_id_and_ext(model_name): model_name for model_name in model_list}
|
|
|
|
|
|
|
|
|
126 |
|
127 |
|
128 |
def txt2img(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
|
|
|
137 |
"height": height,
|
138 |
"seed": seed
|
139 |
})
|
|
|
140 |
job = prodia_client.wait(result)
|
|
|
141 |
return job["imageUrl"]
|
142 |
|
143 |
|
|
|
155 |
"height": height,
|
156 |
"seed": seed
|
157 |
})
|
|
|
158 |
job = prodia_client.wait(result)
|
|
|
159 |
return job["imageUrl"]
|
160 |
|
161 |
|
|
|
168 |
with gr.Blocks(css=css) as demo:
|
169 |
with gr.Row():
|
170 |
with gr.Column(scale=6):
|
171 |
+
model = gr.Dropdown(interactive=True, value="childrensStories_v1ToonAnime.safetensors [2ec7b88b]", show_label=True, label="Stable Diffusion Checkpoint", choices=prodia_client.list_models())
|
172 |
|
173 |
with gr.Column(scale=1):
|
174 |
gr.Markdown(elem_id="powered-by-prodia", value="AUTOMATIC1111 Stable Diffusion Web UI переделано masteroko.<br>Powered by [Prodia](https://prodia.com).<br>For more features and faster generation times check out our [API Docs](https://docs.prodia.com/reference/getting-started-guide).")
|
|
|
207 |
with gr.Column(scale=2):
|
208 |
image_output = gr.Image(value="https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png")
|
209 |
|
210 |
+
# Изменение: добавлен limit на одновременные запросы
|
211 |
+
text_button.click(txt2img, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed], outputs=image_output, concurrency_limit=1024)
|
212 |
|
213 |
with gr.Tab("img2img", id='i2i'):
|
214 |
with gr.Row():
|
215 |
with gr.Column(scale=6, min_width=600):
|
216 |
+
image = gr.Image(show_label=False)
|
217 |
+
prompt = gr.Textbox(placeholder="Prompt", show_label=False, lines=3)
|
218 |
+
negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3)
|
219 |
with gr.Column():
|
220 |
+
text_button = gr.Button("Трансформировать", variant='primary', elem_id="generate")
|
221 |
|
222 |
with gr.Row():
|
223 |
with gr.Column(scale=3):
|
224 |
with gr.Tab("Генерация"):
|
|
|
|
|
225 |
with gr.Row():
|
226 |
with gr.Column(scale=1):
|
227 |
+
sampler = gr.Dropdown(value="DPM++ 2M SDE Exponential", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers())
|
228 |
|
229 |
with gr.Column(scale=1):
|
230 |
+
steps = gr.Slider(label="количество обработок", minimum=1, maximum=100, value=20, step=1)
|
231 |
+
|
232 |
with gr.Row():
|
233 |
with gr.Column(scale=1):
|
234 |
+
width = gr.Slider(label="Ширина", maximum=1024, value=512, step=8)
|
235 |
+
height = gr.Slider(label="Высота", maximum=1024, value=512, step=8)
|
236 |
|
237 |
with gr.Column(scale=1):
|
238 |
+
batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
|
239 |
+
batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
|
240 |
|
241 |
+
cfg_scale = gr.Slider(label="CFG Scale(степень фантазии ии)", minimum=1, maximum=20, value=7, step=1)
|
242 |
+
seed = gr.Number(label="Семя рандома", value=-1)
|
243 |
+
denoising = gr.Slider(label="Denoising", value=0.5)
|
244 |
|
245 |
with gr.Column(scale=2):
|
246 |
+
image_output = gr.Image(value="https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
+
# Изменение: добавлен limit на одновременные запросы
|
249 |
+
text_button.click(img2img, inputs=[image, denoising, prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed], outputs=image_output, concurrency_limit=1024)
|
250 |
+
|
251 |
+
# Запуск Gradio интерфейса
|
252 |
+
demo.launch()
|
|
|
|