File size: 11,108 Bytes
5ddef29
 
 
 
 
 
 
bab1e75
928dc00
9a2c75e
5ddef29
b33f45e
5ddef29
 
2dddeae
5ddef29
 
 
9a2c75e
5ddef29
9a2c75e
 
5ddef29
9a2c75e
 
5ddef29
9a2c75e
 
5ddef29
9a2c75e
5ddef29
 
 
 
 
 
 
 
 
9a2c75e
5ddef29
f429ce6
9a2c75e
f429ce6
9a2c75e
5ddef29
9a2c75e
 
 
 
 
 
 
 
 
 
 
 
5ddef29
9a2c75e
 
 
 
 
 
 
 
 
 
 
 
8637ff9
9a2c75e
 
 
5ddef29
b33f45e
b62f01b
 
 
 
 
 
 
 
 
b33f45e
9a2c75e
b62f01b
 
 
 
 
 
9a2c75e
b62f01b
 
 
9a2c75e
 
 
 
b62f01b
9a2c75e
b62f01b
 
b33f45e
9a2c75e
b62f01b
b33f45e
b62f01b
 
 
9a2c75e
 
 
b62f01b
 
 
 
 
5ddef29
 
b62f01b
9a2c75e
5ddef29
b33f45e
8637ff9
5ddef29
 
 
 
 
 
3bebd7a
 
79e5823
 
5ddef29
 
 
 
b33f45e
8637ff9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d49e1e5
5ddef29
 
 
 
 
 
8637ff9
98511b0
 
9a2c75e
810d812
98511b0
603da5b
98511b0
b62f01b
 
 
 
21e7f7c
b62f01b
 
603da5b
b62f01b
 
 
603da5b
b62f01b
 
21e7f7c
b62f01b
 
11e0886
b62f01b
 
 
7e45f55
 
3bebd7a
b62f01b
32fb49d
 
5ddef29
603da5b
 
b33f45e
b62f01b
 
 
9a2c75e
 
8637ff9
 
 
 
9a2c75e
 
 
8637ff9
9a2c75e
8637ff9
 
 
603da5b
8637ff9
 
9a2c75e
8637ff9
 
9a2c75e
 
8637ff9
 
9a2c75e
 
8637ff9
 
9a2c75e
 
8637ff9
9a2c75e
 
 
b33f45e
8637ff9
9a2c75e
b62f01b
9a2c75e
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import gradio as gr
import requests
import time
import json
import base64
import os
from io import BytesIO
import html
import re
from PIL import Image  # Убедитесь, что PIL импортируется для работы с изображениями


class Prodia:
    def __init__(self, api_key, base=None):
        self.base = base or "https://api.prodia.com/v1"
        self.headers = {
            "X-Prodia-Key": api_key
        }

    def generate(self, params):
        return self._post(f"{self.base}/sd/generate", params).json()

    def transform(self, params):
        return self._post(f"{self.base}/sd/transform", params).json()

    def controlnet(self, params):
        return self._post(f"{self.base}/sd/controlnet", params).json()

    def get_job(self, job_id):
        return self._get(f"{self.base}/job/{job_id}").json()

    def wait(self, job):
        job_result = job
        while job_result['status'] not in ['succeeded', 'failed']:
            time.sleep(0.25)
            job_result = self.get_job(job['job'])
        return job_result

    def list_models(self):
        return self._get(f"{self.base}/sd/models").json()

    def list_samplers(self):
        return self._get(f"{self.base}/sd/samplers").json()

    # Изменение: добавлены повторные попытки при сбоях сети
    def _post(self, url, params):
        headers = {**self.headers, "Content-Type": "application/json"}
        for _ in range(3):
            try:
                response = requests.post(url, headers=headers, data=json.dumps(params))
                response.raise_for_status()
                return response
            except requests.exceptions.RequestException as e:
                print(f"Request failed: {e}, retrying...")
                time.sleep(1)
        raise Exception("Failed after 3 attempts")

    # Изменение: добавлены повторные попытки при сбоях сети
    def _get(self, url):
        for _ in range(3):
            try:
                response = requests.get(url, headers=self.headers)
                response.raise_for_status()
                return response
            except requests.exceptions.RequestException as e:
                print(f"Request failed: {e}, retrying...")
                time.sleep(1)
        raise Exception("Failed after 3 attempts")


def image_to_base64(image, format="PNG"):
    buffered = BytesIO()
    image.save(buffered, format=format)
    img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
    return img_str


def remove_id_and_ext(text):
    text = re.sub(r'\[.*\]$', '', text)
    extension = text[-12:].strip()
    if extension == "safetensors":
        text = text[:-13]
    elif extension == "ckpt":
        text = text[:-4]
    return text


# Изменение: оптимизация функции get_data
def get_data(text):
    patterns = {
        'prompt': r'(.*)',
        'negative_prompt': r'Negative prompt: (.*)',
        'steps': r'Steps: (\d+),',
        'seed': r'Seed: (\d+),',
        'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)',
        'model': r'Model:\s*([^\s,]+)',
        'cfg_scale': r'CFG scale:\s*([\d\.]+)',
        'size': r'Size:\s*([0-9]+x[0-9]+)'
    }
    results = {key: re.search(pattern, text).group(1) if re.search(pattern, text) else None for key, pattern in patterns.items()}
    if results['size']:
        results['w'], results['h'] = map(int, results['size'].split("x"))
    else:
        results['w'], results['h'] = None, None
    return results


# Изменение: оптимизация функции send_to_txt2img
def send_to_txt2img(image):
    result = {tabs: gr.update(selected="t2i")}
    try:
        text = image.info['parameters']
        data = get_data(text)
        fields = ['prompt', 'negative_prompt', 'steps', 'seed', 'cfg_scale', 'w', 'h', 'sampler', 'model']
        for field in fields:
            result[field] = gr.update(value=data[field]) if data[field] is not None else gr.update()
        return result
    except Exception as e:
        print(e)
        return result


prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))
model_list = prodia_client.list_models()
model_names = {remove_id_and_ext(model_name): model_name for model_name in model_list}


def txt2img(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
    result = prodia_client.generate({
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "model": model,
        "steps": steps,
        "sampler": sampler,
        "cfg_scale": cfg_scale,
        "width": width,
        "height": height,
        "seed": seed
    })
    job = prodia_client.wait(result)
    return job["imageUrl"]


def img2img(input_image, denoising, prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
    result = prodia_client.transform({
        "imageData": image_to_base64(input_image),
        "denoising_strength": denoising,
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "model": model,
        "steps": steps,
        "sampler": sampler,
        "cfg_scale": cfg_scale,
        "width": width,
        "height": height,
        "seed": seed
    })
    job = prodia_client.wait(result)
    return job["imageUrl"]


css = """
#generate {
    height: 100%;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Row():
        with gr.Column(scale=6):
            model = gr.Dropdown(interactive=True, value="childrensStories_v1ToonAnime.safetensors [2ec7b88b]", show_label=True, label="Stable Diffusion Checkpoint", choices=prodia_client.list_models())
  
        with gr.Column(scale=1):
            gr.Markdown(elem_id="powered-by-prodia", value="AUTOMATIC1111 Stable Diffusion Web UI переделано masteroko.<br>Powered by [Prodia](https://prodia.com).<br>For more features and faster generation times check out our [API Docs](https://docs.prodia.com/reference/getting-started-guide).")

    with gr.Tabs() as tabs:
        with gr.Tab("txt2img", id='t2i'):
            with gr.Row():
                with gr.Column(scale=6, min_width=600):
                    prompt = gr.Textbox("nsfw", placeholder="Prompt", show_label=False, lines=3)
                    negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
                with gr.Column():
                    text_button = gr.Button("Сгенерировать", variant='primary', elem_id="generate")
                    
            with gr.Row():
                with gr.Column(scale=3):
                    with gr.Tab("Генерация"):
                        with gr.Row():
                            with gr.Column(scale=1):
                                sampler = gr.Dropdown(value="DPM++ 2M SDE Exponential", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers())
                                
                            with gr.Column(scale=1):
                                steps = gr.Slider(label="количество обработок", minimum=1, maximum=100, value=20, step=1)
    
                        with gr.Row():
                            with gr.Column(scale=1):
                                width = gr.Slider(label="Ширина", maximum=1024, value=512, step=8)
                                height = gr.Slider(label="Высота", maximum=1024, value=512, step=8)
                            
                            with gr.Column(scale=1):
                                batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
                                batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
    
                        cfg_scale = gr.Slider(label="CFG Scale(степень фантазии ии)", minimum=1, maximum=20, value=7, step=1)
                        seed = gr.Number(label="Семя рандома", value=-1)

                with gr.Column(scale=2):
                    image_output = gr.Image(value="https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png")
    
            # Изменение: добавлен limit на одновременные запросы
            text_button.click(txt2img, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed], outputs=image_output, concurrency_limit=1024)
        
        with gr.Tab("img2img", id='i2i'):
            with gr.Row():
                with gr.Column(scale=6, min_width=600):
                    image = gr.Image(show_label=False)
                    prompt = gr.Textbox(placeholder="Prompt", show_label=False, lines=3)
                    negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3)
                with gr.Column():
                    text_button = gr.Button("Трансформировать", variant='primary', elem_id="generate")
                    
            with gr.Row():
                with gr.Column(scale=3):
                    with gr.Tab("Генерация"):
                        with gr.Row():
                            with gr.Column(scale=1):
                                sampler = gr.Dropdown(value="DPM++ 2M SDE Exponential", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers())
                                
                            with gr.Column(scale=1):
                                steps = gr.Slider(label="количество обработок", minimum=1, maximum=100, value=20, step=1)
    
                        with gr.Row():
                            with gr.Column(scale=1):
                                width = gr.Slider(label="Ширина", maximum=1024, value=512, step=8)
                                height = gr.Slider(label="Высота", maximum=1024, value=512, step=8)
                            
                            with gr.Column(scale=1):
                                batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
                                batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
    
                        cfg_scale = gr.Slider(label="CFG Scale(степень фантазии ии)", minimum=1, maximum=20, value=7, step=1)
                        seed = gr.Number(label="Семя рандома", value=-1)
                        denoising = gr.Slider(label="Denoising", value=0.5)

                with gr.Column(scale=2):
                    image_output = gr.Image(value="https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png")
    
            # Изменение: добавлен limit на одновременные запросы
            text_button.click(img2img, inputs=[image, denoising, prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed], outputs=image_output, concurrency_limit=1024)
            
# Запуск Gradio интерфейса
demo.launch()