Spaces:
Running
Running
import torch | |
import json | |
import gc | |
import spaces | |
import librosa | |
import soundfile as sf | |
import numpy as np | |
from pathlib import Path | |
from typing import Dict, Tuple | |
from utils import convert_to_stereo_and_wav | |
from mdxnet_model import MDX, MDXModel | |
import time | |
STEM_NAMING = { | |
"Vocals": "Instrumental", | |
"Other": "Instruments", | |
"Instrumental": "Vocals", | |
"Drums": "Drumless", | |
"Bass": "Bassless", | |
} | |
def run_mdx(model_params: Dict, | |
input_filename: Path, | |
output_dir: Path, | |
model_path: Path, | |
denoise: bool = False, | |
m_threads: int = 2, | |
device_base: str = "cuda", | |
) -> Tuple[str, str]: | |
""" | |
Separate vocals using MDX model | |
""" | |
if device_base == "cuda": | |
device = torch.device("cuda:0") | |
processor_num = 0 | |
device_properties = torch.cuda.get_device_properties(device) | |
vram_gb = device_properties.total_memory / 1024**3 | |
m_threads = 1 if vram_gb < 8 else (8 if vram_gb > 32 else 2) | |
else: | |
device = torch.device("cpu") | |
processor_num = -1 | |
m_threads = 1 | |
print(f"device: {device}") | |
model_hash = MDX.get_hash(model_path) # type: str | |
mp = model_params.get(model_hash) | |
model = MDXModel( | |
device, | |
dim_f=mp["mdx_dim_f_set"], | |
dim_t=2 ** mp["mdx_dim_t_set"], | |
n_fft=mp["mdx_n_fft_scale_set"], | |
stem_name=mp["primary_stem"], | |
compensation=mp["compensate"], | |
) | |
mdx_sess = MDX(model_path, model, processor=processor_num) | |
wave, sr = librosa.load(input_filename, mono=False, sr=44100) | |
# normalizing input wave gives better output | |
peak = max(np.max(wave), abs(np.min(wave))) | |
wave /= peak | |
if denoise: | |
wave_processed = -(mdx_sess.process_wave(-wave, m_threads)) + (mdx_sess.process_wave(wave, m_threads)) # type: np.array | |
wave_processed *= 0.5 | |
else: | |
wave_processed = mdx_sess.process_wave(wave, m_threads) | |
# return to previous peak | |
wave_processed *= peak | |
stem_name = model.stem_name | |
# output main track | |
main_filepath = output_dir / input_filename.with_name(f"{input_filename.stem}_{stem_name}.wav") | |
sf.write(main_filepath, wave_processed.T, sr) | |
# output reverse track | |
invert_filepath = output_dir / input_filename.with_name(f"{input_filename.stem}_{stem_name}_reverse.wav") | |
sf.write(invert_filepath, (-wave_processed.T * model.compensation) + wave.T, sr) | |
del mdx_sess, wave_processed, wave | |
gc.collect() | |
torch.cuda.empty_cache() | |
return main_filepath, invert_filepath | |
def run_mdx_return_np(model_params: Dict, | |
input_filename: Path, | |
model_path: Path, | |
denoise: bool = False, | |
m_threads: int = 2, | |
device_base: str = "cuda", | |
) -> Tuple[np.ndarray, np.ndarray]: | |
""" | |
Separate vocals using MDX model | |
""" | |
if device_base == "cuda": | |
device = torch.device("cuda:0") | |
processor_num = 0 | |
device_properties = torch.cuda.get_device_properties(device) | |
vram_gb = device_properties.total_memory / 1024**3 | |
m_threads = 1 if vram_gb < 8 else (8 if vram_gb > 32 else 2) | |
else: | |
device = torch.device("cpu") | |
processor_num = -1 | |
m_threads = 1 | |
print(f"device: {device}") | |
model_hash = MDX.get_hash(model_path) # type: str | |
mp = model_params.get(model_hash) | |
model = MDXModel( | |
device, | |
dim_f=mp["mdx_dim_f_set"], | |
dim_t=2 ** mp["mdx_dim_t_set"], | |
n_fft=mp["mdx_n_fft_scale_set"], | |
stem_name=mp["primary_stem"], | |
compensation=mp["compensate"], | |
) | |
mdx_sess = MDX(model_path, model, processor=processor_num) | |
wave, sr = librosa.load(input_filename, mono=False, sr=44100) | |
# normalizing input wave gives better output | |
peak = max(np.max(wave), abs(np.min(wave))) | |
wave /= peak | |
if denoise: | |
wave_processed = -(mdx_sess.process_wave(-wave, m_threads)) + (mdx_sess.process_wave(wave, m_threads)) # type: np.array | |
wave_processed *= 0.5 | |
else: | |
wave_processed = mdx_sess.process_wave(wave, m_threads) | |
# return to previous peak | |
wave_processed *= peak | |
stem_name = model.stem_name | |
# output main track | |
main_track = wave_processed.T | |
# output reverse track | |
invert_track = (-wave_processed.T * model.compensation) + wave.T | |
return main_track, invert_track | |
def extract_bgm(mdx_model_params: Dict, | |
input_filename: Path, | |
model_bgm_path: Path, | |
output_dir: Path, | |
device_base: str = "cuda") -> Path: | |
""" | |
Extract pure background music, remove vocals | |
""" | |
background_path, _ = run_mdx(model_params=mdx_model_params, | |
input_filename=input_filename, | |
output_dir=output_dir, | |
model_path=model_bgm_path, | |
denoise=False, | |
device_base=device_base, | |
) | |
return background_path | |
def extract_vocal(mdx_model_params: Dict, | |
input_filename: Path, | |
model_basic_vocal_path: Path, | |
model_main_vocal_path: Path, | |
output_dir: Path, | |
main_vocals_flag: bool = False, | |
device_base: str = "cuda") -> Path: | |
""" | |
Extract vocals | |
""" | |
# First use UVR-MDX-NET-Voc_FT.onnx basic vocal separation model | |
vocals_path, _ = run_mdx(mdx_model_params, | |
input_filename, | |
output_dir, | |
model_basic_vocal_path, | |
denoise=True, | |
device_base=device_base, | |
) | |
# If "main_vocals_flag" is enabled, use UVR_MDXNET_KARA_2.onnx to further separate main vocals (Main) from backup vocals/background vocals (Backup) | |
if main_vocals_flag: | |
time.sleep(2) | |
backup_vocals_path, main_vocals_path = run_mdx(mdx_model_params, | |
output_dir, | |
model_main_vocal_path, | |
vocals_path, | |
denoise=True, | |
device_base=device_base, | |
) | |
vocals_path = main_vocals_path | |
# If "dereverb_flag" is enabled, use Reverb_HQ_By_FoxJoy.onnx for dereverberation | |
# deactived since Model license unknown | |
# if dereverb_flag: | |
# time.sleep(2) | |
# _, vocals_dereverb_path = run_mdx(mdx_model_params, | |
# output_dir, | |
# mdxnet_models_dir/"Reverb_HQ_By_FoxJoy.onnx", | |
# vocals_path, | |
# denoise=True, | |
# device_base=device_base, | |
# ) | |
# vocals_path = vocals_dereverb_path | |
return vocals_path | |
def process_uvr_task(input_file_path: Path, | |
output_dir: Path, | |
models_path: Dict[str, Path], | |
main_vocals_flag: bool = False, # If "Main" is enabled, use UVR_MDXNET_KARA_2.onnx to further separate main and backup vocals | |
) -> Tuple[Path, Path]: | |
device_base = "cuda" if torch.cuda.is_available() else "cpu" | |
# load mdx model definition | |
with open("./mdx_models/model_data.json") as infile: | |
mdx_model_params = json.load(infile) # type: Dict | |
output_dir.mkdir(parents=True, exist_ok=True) | |
input_file_path = convert_to_stereo_and_wav(input_file_path) # type: Path | |
# 1. Extract pure background music, remove vocals | |
background_path = extract_bgm(mdx_model_params, | |
input_file_path, | |
models_path["bgm"], | |
output_dir, | |
device_base=device_base) | |
# 2. Separate vocals | |
# First use UVR-MDX-NET-Voc_FT.onnx basic vocal separation model | |
vocals_path = extract_vocal(mdx_model_params, | |
input_file_path, | |
models_path["basic_vocal"], | |
models_path["main_vocal"], | |
output_dir, | |
main_vocals_flag=main_vocals_flag, | |
device_base=device_base) | |
return background_path, vocals_path | |
def get_model_params(model_path: Path) -> Dict: | |
""" | |
Get model parameters from model path | |
""" | |
with open(model_path / "model_data.json") as infile: | |
return json.load(infile) # type: Dict | |