File size: 9,083 Bytes
bbf5927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e8f9db
bbf5927
 
 
 
 
 
 
 
 
 
 
0ec3ee3
bbf5927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb9f0f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbf5927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb9f0f0
bbf5927
 
 
 
 
 
 
 
eb9f0f0
bbf5927
eb9f0f0
 
bbf5927
eb9f0f0
bbf5927
 
 
 
3e18896
bbf5927
 
 
6e8f9db
bbf5927
 
 
 
3e18896
bbf5927
 
 
 
 
 
 
 
3e18896
 
bbf5927
 
 
 
6e8f9db
bbf5927
6e8f9db
bbf5927
 
 
3e18896
bbf5927
 
 
6e8f9db
bbf5927
 
 
 
3e18896
bbf5927
 
 
 
 
6e8f9db
 
 
 
 
 
 
 
 
 
 
 
bbf5927
 
3e18896
bbf5927
3e18896
6e8f9db
bbf5927
 
 
 
 
3e18896
bbf5927
 
 
 
 
6e8f9db
bbf5927
 
3e18896
bbf5927
 
 
6e8f9db
 
bbf5927
 
3e18896
 
bbf5927
 
 
 
eb9f0f0
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import torch
import json
import gc
import spaces
import librosa
import soundfile as sf
import numpy as np
from pathlib import Path
from typing import Dict, Tuple
from utils import convert_to_stereo_and_wav
from mdxnet_model import MDX, MDXModel
import time


STEM_NAMING = {
    "Vocals": "Instrumental",
    "Other": "Instruments",
    "Instrumental": "Vocals",
    "Drums": "Drumless",
    "Bass": "Bassless",
}


@spaces.GPU()
def run_mdx(model_params: Dict,
            input_filename: Path,
            output_dir: Path,
            model_path: Path,
            denoise: bool = False,
            m_threads: int = 2,
            device_base: str = "cuda",
            ) -> Tuple[str, str]:
    """
    Separate vocals using MDX model
    """
    if device_base == "cuda":
        device = torch.device("cuda:0")
        processor_num = 0
        device_properties = torch.cuda.get_device_properties(device)
        vram_gb = device_properties.total_memory / 1024**3
        m_threads = 1 if vram_gb < 8 else (8 if vram_gb > 32 else 2)
    else:
        device = torch.device("cpu")
        processor_num = -1
        m_threads = 1
    print(f"device: {device}")

    model_hash = MDX.get_hash(model_path)  # type: str
    mp = model_params.get(model_hash)
    model = MDXModel(
        device,
        dim_f=mp["mdx_dim_f_set"],
        dim_t=2 ** mp["mdx_dim_t_set"],
        n_fft=mp["mdx_n_fft_scale_set"],
        stem_name=mp["primary_stem"],
        compensation=mp["compensate"],
    )

    mdx_sess = MDX(model_path, model, processor=processor_num)
    wave, sr = librosa.load(input_filename, mono=False, sr=44100)
    # normalizing input wave gives better output
    peak = max(np.max(wave), abs(np.min(wave)))
    wave /= peak
    if denoise:
        wave_processed = -(mdx_sess.process_wave(-wave, m_threads)) + (mdx_sess.process_wave(wave, m_threads))  # type: np.array
        wave_processed *= 0.5
    else:
        wave_processed = mdx_sess.process_wave(wave, m_threads)
    # return to previous peak
    wave_processed *= peak
    stem_name = model.stem_name

    # output main track
    main_filepath = output_dir / input_filename.with_name(f"{input_filename.stem}_{stem_name}.wav")
    sf.write(main_filepath, wave_processed.T, sr)

    # output reverse track 
    invert_filepath = output_dir / input_filename.with_name(f"{input_filename.stem}_{stem_name}_reverse.wav")
    sf.write(invert_filepath, (-wave_processed.T * model.compensation) + wave.T, sr)

    del mdx_sess, wave_processed, wave
    gc.collect()
    torch.cuda.empty_cache()
    return main_filepath, invert_filepath


@spaces.GPU()
def run_mdx_return_np(model_params: Dict,
                      input_filename: Path,
                      model_path: Path,
                      denoise: bool = False,
                      m_threads: int = 2,
                      device_base: str = "cuda",
                      ) -> Tuple[np.ndarray, np.ndarray]:
    """
    Separate vocals using MDX model
    """
    if device_base == "cuda":
        device = torch.device("cuda:0")
        processor_num = 0
        device_properties = torch.cuda.get_device_properties(device)
        vram_gb = device_properties.total_memory / 1024**3
        m_threads = 1 if vram_gb < 8 else (8 if vram_gb > 32 else 2)
    else:
        device = torch.device("cpu")
        processor_num = -1
        m_threads = 1
    print(f"device: {device}")

    model_hash = MDX.get_hash(model_path)  # type: str
    mp = model_params.get(model_hash)
    model = MDXModel(
        device,
        dim_f=mp["mdx_dim_f_set"],
        dim_t=2 ** mp["mdx_dim_t_set"],
        n_fft=mp["mdx_n_fft_scale_set"],
        stem_name=mp["primary_stem"],
        compensation=mp["compensate"],
    )

    mdx_sess = MDX(model_path, model, processor=processor_num)
    wave, sr = librosa.load(input_filename, mono=False, sr=44100)
    # normalizing input wave gives better output
    peak = max(np.max(wave), abs(np.min(wave)))
    wave /= peak
    if denoise:
        wave_processed = -(mdx_sess.process_wave(-wave, m_threads)) + (mdx_sess.process_wave(wave, m_threads))  # type: np.array
        wave_processed *= 0.5
    else:
        wave_processed = mdx_sess.process_wave(wave, m_threads)
    # return to previous peak
    wave_processed *= peak
    stem_name = model.stem_name

    # output main track
    main_track = wave_processed.T

    # output reverse track
    invert_track = (-wave_processed.T * model.compensation) + wave.T

    return main_track, invert_track


def extract_bgm(mdx_model_params: Dict,
                input_filename: Path,
                model_bgm_path: Path,
                output_dir: Path,
                device_base: str = "cuda") -> Path:
    """
    Extract pure background music, remove vocals
    """
    background_path, _ = run_mdx(model_params=mdx_model_params,
                                  input_filename=input_filename,
                                  output_dir=output_dir,
                                  model_path=model_bgm_path,
                                  denoise=False,
                                  device_base=device_base,
                                  )
    return background_path


def extract_vocal(mdx_model_params: Dict,
                  input_filename: Path,
                  model_basic_vocal_path: Path,
                  model_main_vocal_path: Path,
                  output_dir: Path,
                  main_vocals_flag: bool = False,
                  device_base: str = "cuda") -> Path:
    """
    Extract vocals
    """
    # First use UVR-MDX-NET-Voc_FT.onnx basic vocal separation model
    vocals_path, _ = run_mdx(mdx_model_params,
                             input_filename,
                             output_dir,
                             model_basic_vocal_path,
                             denoise=True,
                             device_base=device_base,
                             )
    # If "main_vocals_flag" is enabled, use UVR_MDXNET_KARA_2.onnx to further separate main vocals (Main) from backup vocals/background vocals (Backup)
    if main_vocals_flag:
        time.sleep(2)
        backup_vocals_path, main_vocals_path = run_mdx(mdx_model_params,
                                                       output_dir,
                                                       model_main_vocal_path,
                                                       vocals_path,
                                                       denoise=True,
                                                       device_base=device_base,
                                                       )
        vocals_path = main_vocals_path
    # If "dereverb_flag" is enabled, use Reverb_HQ_By_FoxJoy.onnx for dereverberation
    # deactived since Model license unknown
    # if dereverb_flag:
    #     time.sleep(2)
    #     _, vocals_dereverb_path = run_mdx(mdx_model_params,
    #                                       output_dir,
    #                                       mdxnet_models_dir/"Reverb_HQ_By_FoxJoy.onnx",
    #                                       vocals_path,
    #                                       denoise=True,
    #                                       device_base=device_base,
    #                                       )
    #     vocals_path = vocals_dereverb_path
    return vocals_path

def process_uvr_task(input_file_path: Path,
                     output_dir: Path,
                     models_path: Dict[str, Path],
                     main_vocals_flag: bool = False,  # If "Main" is enabled, use UVR_MDXNET_KARA_2.onnx to further separate main and backup vocals
                     ) -> Tuple[Path, Path]:

    device_base = "cuda" if torch.cuda.is_available() else "cpu"

    # load mdx model definition
    with open("./mdx_models/model_data.json") as infile:
        mdx_model_params = json.load(infile)  # type: Dict

    output_dir.mkdir(parents=True, exist_ok=True)
    input_file_path = convert_to_stereo_and_wav(input_file_path)  # type: Path

    # 1. Extract pure background music, remove vocals
    background_path = extract_bgm(mdx_model_params,
                                  input_file_path,
                                  models_path["bgm"],
                                  output_dir,
                                  device_base=device_base)

    # 2. Separate vocals
    # First use UVR-MDX-NET-Voc_FT.onnx basic vocal separation model
    vocals_path = extract_vocal(mdx_model_params,
                                input_file_path,
                                models_path["basic_vocal"],
                                models_path["main_vocal"],
                                output_dir,
                                main_vocals_flag=main_vocals_flag,
                                device_base=device_base)

    return background_path, vocals_path


def get_model_params(model_path: Path) -> Dict:
    """
    Get model parameters from model path
    """
    with open(model_path / "model_data.json") as infile:
        return json.load(infile)  # type: Dict