|
import os |
|
import gradio as gr |
|
import requests |
|
import inspect |
|
import pandas as pd |
|
|
|
from huggingface_hub import hf_hub_download, login |
|
|
|
from smolagents import CodeAgent |
|
from smolagents import OpenAIServerModel |
|
from smolagents import Tool |
|
from smolagents import PythonInterpreterTool |
|
from smolagents import DuckDuckGoSearchTool |
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
|
|
|
|
|
|
HF_DATASET_TOKEN = os.getenv("HF_DATASET_TOKEN") |
|
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") |
|
|
|
|
|
""" |
|
Basic function to download a GAIA dataset validation file |
|
""" |
|
def get_GAIA_dataset_validation_file(file_name: str): |
|
response = hf_hub_download( |
|
repo_id="gaia-benchmark/GAIA", |
|
filename= f"2023/validation/{file_name}", |
|
repo_type="dataset" |
|
) |
|
return response |
|
|
|
""" |
|
Basic function to download a GAIA dataset test file |
|
""" |
|
def get_GAIA_dataset_test_file(file_name: str): |
|
response = hf_hub_download( |
|
repo_id="gaia-benchmark/GAIA", |
|
filename= f"2023/test/{file_name}", |
|
repo_type="dataset" |
|
) |
|
return response |
|
|
|
""" |
|
Basic function to download a GAIA dataset file (validation attempted first) |
|
""" |
|
def get_GAIA_dataset_file(file_name: str): |
|
|
|
global HF_DATASET_TOKEN |
|
login(token = HF_DATASET_TOKEN) |
|
|
|
response = None |
|
try: |
|
response = get_GAIA_dataset_validation_file(file_name) |
|
except: |
|
response = get_GAIA_dataset_test_file(file_name) |
|
|
|
return response |
|
|
|
class BasicAgent: |
|
def __init__(self): |
|
print("Starting the initialization of model.") |
|
|
|
global OPENAI_API_KEY |
|
|
|
model = OpenAIServerModel( |
|
model_id="gpt-4o-mini-2024-07-18", |
|
api_key = OPENAI_API_KEY |
|
) |
|
print("Core model has been initialized.") |
|
|
|
self.tools = [ |
|
DuckDuckGoSearchTool() |
|
] |
|
print("Agent tools have been initialized.") |
|
|
|
self.agent = CodeAgent( |
|
model = model, |
|
tools = self.tools, |
|
add_base_tools=True |
|
) |
|
print("Core agent has been initialized.") |
|
|
|
def __call__(self, question: str) -> str: |
|
print("#"*20) |
|
print(f"ℹ️ Agent received question: {question}") |
|
print("#"*20) |
|
try: |
|
|
|
answer = self.agent.run(question) |
|
print("#"*20) |
|
print(f"✅ Agent returning the answer: {answer}") |
|
print("#"*20) |
|
|
|
|
|
return answer |
|
except Exception as e: |
|
print("!"*20) |
|
print(f"❗Error running agent {str(e)}") |
|
print("!"*20) |
|
|
|
def run_and_submit_all( profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
print("!!!!!!!!!!!!! HANDLING DATASET FILE") |
|
response = get_GAIA_dataset_file("076c8171-9b3b-49b9-a477-244d2a532826.xlsx") |
|
print(response) |
|
|
|
return |
|
|
|
|
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username= f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
agent = BasicAgent() |
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(agent_code) |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
except requests.exceptions.JSONDecodeError as e: |
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
print(f"Response text: {response.text[:500]}") |
|
return f"Error decoding server response for questions: {e}", None |
|
except Exception as e: |
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
question_index = 1 |
|
for item in questions_data: |
|
print(f"ℹ️ Handling question #: {question_index}") |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
print(f"⚠️Skipping item with missing task_id or question: {item}") |
|
continue |
|
try: |
|
|
|
submitted_answer = "Placeholder" |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
print(f"✅ Successful handling of question #: {question_index}") |
|
except Exception as e: |
|
print(f"❌ Error running agent on task {task_id}: {e}") |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
question_index = question_index + 1 |
|
|
|
|
|
return |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
print("Submission successful.") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
# HuggingFace agents course - final assignement implementation. |
|
An OPEN AI key will be needed to run this assignment. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
|
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |