marin-iuga's picture
Update app.py
94d721f verified
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from huggingface_hub import hf_hub_download, login
from smolagents import CodeAgent
from smolagents import OpenAIServerModel
from smolagents import Tool
from smolagents import PythonInterpreterTool
from smolagents import DuckDuckGoSearchTool
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
# Global variables
HF_DATASET_TOKEN = os.getenv("HF_DATASET_TOKEN")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
# GAIA Dataset file dowloading
"""
Basic function to download a GAIA dataset validation file
"""
def get_GAIA_dataset_validation_file(file_name: str):
response = hf_hub_download(
repo_id="gaia-benchmark/GAIA",
filename= f"2023/validation/{file_name}",
repo_type="dataset"
)
return response
"""
Basic function to download a GAIA dataset test file
"""
def get_GAIA_dataset_test_file(file_name: str):
response = hf_hub_download(
repo_id="gaia-benchmark/GAIA",
filename= f"2023/test/{file_name}",
repo_type="dataset"
)
return response
"""
Basic function to download a GAIA dataset file (validation attempted first)
"""
def get_GAIA_dataset_file(file_name: str):
global HF_DATASET_TOKEN
login(token = HF_DATASET_TOKEN)
response = None
try:
response = get_GAIA_dataset_validation_file(file_name)
except:
response = get_GAIA_dataset_test_file(file_name)
return response
class BasicAgent:
def __init__(self):
print("Starting the initialization of model.")
global OPENAI_API_KEY
model = OpenAIServerModel(
model_id="gpt-4o-mini-2024-07-18",
api_key = OPENAI_API_KEY
)
print("Core model has been initialized.")
self.tools = [
DuckDuckGoSearchTool()
]
print("Agent tools have been initialized.")
self.agent = CodeAgent(
model = model,
tools = self.tools,
add_base_tools=True # Add basic tools like math
)
print("Core agent has been initialized.")
def __call__(self, question: str) -> str:
print("#"*20)
print(f"ℹ️ Agent received question: {question}")
print("#"*20)
try:
# send the question content to the agent
answer = self.agent.run(question)
print("#"*20)
print(f"✅ Agent returning the answer: {answer}")
print("#"*20)
# return the answer
return answer
except Exception as e:
print("!"*20)
print(f"❗Error running agent {str(e)}")
print("!"*20)
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
print("!!!!!!!!!!!!! HANDLING DATASET FILE")
response = get_GAIA_dataset_file("076c8171-9b3b-49b9-a477-244d2a532826.xlsx")
print(response)
return
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
question_index = 1
for item in questions_data:
print(f"ℹ️ Handling question #: {question_index}")
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"⚠️Skipping item with missing task_id or question: {item}")
continue
try:
#submitted_answer = agent(question_text)
submitted_answer = "Placeholder"
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
print(f"✅ Successful handling of question #: {question_index}")
except Exception as e:
print(f"❌ Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
question_index = question_index + 1
# REMOVE: prevent payload submission!!!
return
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
# HuggingFace agents course - final assignement implementation.
An OPEN AI key will be needed to run this assignment.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)