|
import gradio as gr |
|
import numpy as np |
|
from infer import infer, CONTROLNET_MODE, MAX_SEED |
|
|
|
MAX_IMAGE_SIZE = 1024 |
|
|
|
examples = [ |
|
"The image of a cartoonish mouse with clown red round nose and white curly hair. The mouse is gray with big pink ears and a black pointed nose. It has a simple design, the background color is white. The style of the image is reminiscent of a sticker or a digital illustration.", |
|
"The image of a cartoonish mouse eating from a red bowl of yellow triangle chips, her cheeks are full. The mouse is gray with big pink ears, small white eyes and a black pointed nose. It has a simple design, the background color is white. The style of the image is reminiscent of a sticker or a digital illustration.", |
|
"The image of a cartoonish mouse with red hearts instead of eyes meaning that the mouse is in love with something. The mouse is gray with big pink ears and a black pointed nose. It has a simple design, the background color is white. The style of the image is reminiscent of a sticker or a digital illustration.", |
|
"The image of a cartoonish mouse with sunglasses and smiling. The mouse is gray with big pink ears and a black pointed nose. It has a simple design, the background color is white. The style of the image is reminiscent of a sticker or a digital illustration.", |
|
] |
|
|
|
css = """ |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 640px; |
|
} |
|
""" |
|
|
|
def on_checkbox_change(use_advanced): |
|
visible = use_advanced |
|
return (gr.update(visible=visible, interactive=visible), |
|
gr.update(visible=visible, interactive=visible), |
|
gr.update(visible=visible, interactive=visible)) |
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(" # Maria Lashina T2I Rat Stickers Generation App") |
|
|
|
MODEL_LIST = [ |
|
"CompVis/stable-diffusion-v1-4", |
|
"stable-diffusion-v1-5/stable-diffusion-v1-5", |
|
"Maria_Lashina_LoRA" |
|
] |
|
with gr.Row(): |
|
model_id = gr.Dropdown( |
|
label="Model", |
|
choices=MODEL_LIST |
|
) |
|
|
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
|
|
run_button = gr.Button("Run", scale=0, variant="primary") |
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=1, |
|
|
|
value="bad anatomy, disfigured, poorly drawn face, ugly, low quality, blurry, distortion", |
|
visible=True, |
|
) |
|
|
|
with gr.Row(): |
|
delete_background = gr.Checkbox(label="Delete background?") |
|
|
|
use_controlnet = gr.Checkbox(label="Use ControlNet") |
|
control_strength = gr.Slider( |
|
label="ControlNet strength", |
|
minimum=0, |
|
maximum=1, |
|
step=0.1, |
|
value=0.8, |
|
visible=False |
|
) |
|
controlnet_mode = gr.Dropdown(CONTROLNET_MODE.keys(), label="ControlNet mode", visible=False) |
|
controlnet_image = gr.Image(label="ControlNet image", visible=False) |
|
use_controlnet.change(on_checkbox_change, use_controlnet, [control_strength, controlnet_mode, controlnet_image]) |
|
|
|
use_ip_adapter = gr.Checkbox(label="Use IPAdapter") |
|
ip_adapter_scale = gr.Slider( |
|
label="IPAdapter scale", |
|
minimum=0, |
|
maximum=1, |
|
step=0.1, |
|
value=0.8, |
|
visible=False |
|
) |
|
ip_adapter_image = gr.Image(label="IPAdapter image", visible=False) |
|
use_ip_adapter.change(on_checkbox_change, use_ip_adapter, [ip_adapter_scale, ip_adapter_image]) |
|
|
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=42, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=False) |
|
|
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=512, |
|
) |
|
|
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=512, |
|
) |
|
|
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.0, |
|
maximum=15.0, |
|
step=1.0, |
|
value=8.0, |
|
) |
|
|
|
lora_scale = gr.Slider( |
|
label="LoRA scale", |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.1, |
|
value=0.8, |
|
) |
|
|
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=30, |
|
) |
|
|
|
gr.Examples(examples=examples, inputs=[prompt]) |
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn=infer, |
|
inputs=[ |
|
model_id, |
|
prompt, |
|
negative_prompt, |
|
seed, |
|
randomize_seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
lora_scale, |
|
num_inference_steps, |
|
use_controlnet, |
|
control_strength, |
|
controlnet_mode, |
|
controlnet_image, |
|
use_ip_adapter, |
|
ip_adapter_scale, |
|
ip_adapter_image, |
|
delete_background |
|
], |
|
outputs=[result, seed], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=True, debug=True) |
|
|