File size: 6,540 Bytes
3c3014b
 
02c021a
3c3014b
 
 
 
fbf3291
3c3014b
 
 
 
 
 
 
 
 
 
 
 
ada0ab1
 
 
 
 
 
3c3014b
 
bff87b0
3c3014b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbf3291
 
ada0ab1
 
 
4f050b3
 
6402ae2
ada0ab1
 
 
 
 
0b965d6
ada0ab1
 
 
 
 
 
 
 
 
 
 
 
0b965d6
ada0ab1
 
3c3014b
ada0ab1
e1136c8
3c3014b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9d8628
3c3014b
 
 
 
 
 
 
e9d8628
3c3014b
 
 
 
 
 
0b965d6
fbf3291
36683d7
e9d8628
 
cc64eff
e9d8628
 
 
 
 
3c3014b
 
 
 
 
 
36683d7
fbf3291
3c3014b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc64eff
3c3014b
ada0ab1
2387a4c
ada0ab1
 
 
 
4f050b3
 
3c3014b
 
 
 
 
d4011b4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import gradio as gr
import numpy as np
from infer import infer, CONTROLNET_MODE, MAX_SEED

MAX_IMAGE_SIZE = 1024

examples = [
    "The image of a cartoonish mouse with clown red round nose and white curly hair. The mouse is gray with big pink ears and a black pointed nose. It has a simple design, the background color is white. The style of the image is reminiscent of a sticker or a digital illustration.",
    "The image of a cartoonish mouse eating from a red bowl of yellow triangle chips, her cheeks are full. The mouse is gray with big pink ears, small white eyes and a black pointed nose. It has a simple design, the background color is white. The style of the image is reminiscent of a sticker or a digital illustration.",
    "The image of a cartoonish mouse with red hearts instead of eyes meaning that the mouse is in love with something. The mouse is gray with big pink ears and a black pointed nose. It has a simple design, the background color is white. The style of the image is reminiscent of a sticker or a digital illustration.",
    "The image of a cartoonish mouse with sunglasses and smiling. The mouse is gray with big pink ears and a black pointed nose. It has a simple design, the background color is white. The style of the image is reminiscent of a sticker or a digital illustration.",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

def on_checkbox_change(use_advanced):
    visible = use_advanced
    return (gr.update(visible=visible, interactive=visible),
            gr.update(visible=visible, interactive=visible),
            gr.update(visible=visible, interactive=visible))

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Maria Lashina T2I Rat Stickers Generation App")

        MODEL_LIST = [
            "CompVis/stable-diffusion-v1-4",
            "stable-diffusion-v1-5/stable-diffusion-v1-5",
            "Maria_Lashina_LoRA"
        ]
        with gr.Row():
            model_id = gr.Dropdown(
                label="Model",
                choices=MODEL_LIST
            )

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                # placeholder="Enter a negative prompt",
                value="bad anatomy, disfigured, poorly drawn face, ugly, low quality, blurry, distortion",
                visible=True,
            )

            with gr.Row():
                delete_background = gr.Checkbox(label="Delete background?")

            use_controlnet = gr.Checkbox(label="Use ControlNet")
            control_strength = gr.Slider(
                label="ControlNet strength",
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.8,
                visible=False
            )
            controlnet_mode = gr.Dropdown(CONTROLNET_MODE.keys(), label="ControlNet mode", visible=False)
            controlnet_image = gr.Image(label="ControlNet image", visible=False)
            use_controlnet.change(on_checkbox_change, use_controlnet, [control_strength, controlnet_mode, controlnet_image])

            use_ip_adapter = gr.Checkbox(label="Use IPAdapter")
            ip_adapter_scale = gr.Slider(
                label="IPAdapter scale",
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.8,
                visible=False
            )
            ip_adapter_image = gr.Image(label="IPAdapter image", visible=False)
            use_ip_adapter.change(on_checkbox_change, use_ip_adapter, [ip_adapter_scale, ip_adapter_image])

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=False)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=15.0,
                    step=1.0,
                    value=8.0,  # Replace with defaults that work for your model
                )

                lora_scale = gr.Slider(
                    label="LoRA scale",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.1,
                    value=0.8,  # Replace with defaults that work for your model
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=30,  # Replace with defaults that work for your model
                )

        gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            model_id,
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            lora_scale,
            num_inference_steps,
            use_controlnet,
            control_strength,
            controlnet_mode,
            controlnet_image,
            use_ip_adapter,
            ip_adapter_scale,
            ip_adapter_image,
            delete_background
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch(share=True, debug=True)