Maria
commited on
Commit
·
ada0ab1
1
Parent(s):
5cbab77
hw6
Browse files
app.py
CHANGED
@@ -1,75 +1,10 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
import
|
4 |
-
import os
|
5 |
-
|
6 |
-
# import spaces #[uncomment to use ZeroGPU]
|
7 |
-
from diffusers import DiffusionPipeline
|
8 |
-
from peft import PeftModel, LoraConfig
|
9 |
-
import torch
|
10 |
-
|
11 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
-
|
13 |
-
if torch.cuda.is_available():
|
14 |
-
torch_dtype = torch.float16
|
15 |
-
else:
|
16 |
-
torch_dtype = torch.float32
|
17 |
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
MAX_IMAGE_SIZE = 1024
|
20 |
|
21 |
-
LoRA_path = 'new_model'
|
22 |
-
|
23 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
24 |
-
def infer(
|
25 |
-
model_id,
|
26 |
-
prompt,
|
27 |
-
negative_prompt,
|
28 |
-
seed,
|
29 |
-
randomize_seed,
|
30 |
-
width,
|
31 |
-
height,
|
32 |
-
guidance_scale,
|
33 |
-
num_inference_steps,
|
34 |
-
progress=gr.Progress(track_tqdm=True),
|
35 |
-
):
|
36 |
-
if randomize_seed:
|
37 |
-
seed = random.randint(0, MAX_SEED)
|
38 |
-
|
39 |
-
generator = torch.Generator().manual_seed(seed)
|
40 |
-
|
41 |
-
if model_id == 'Maria_Lashina_LoRA':
|
42 |
-
adapter_name = 'a cartoonish mouse'
|
43 |
-
unet_sub_dir = os.path.join(LoRA_path, "unet")
|
44 |
-
text_encoder_sub_dir = os.path.join(LoRA_path, "text_encoder")
|
45 |
-
|
46 |
-
pipe = DiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4', torch_dtype=torch_dtype).to(device)
|
47 |
-
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
|
48 |
-
|
49 |
-
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name)
|
50 |
-
|
51 |
-
if torch_dtype == torch.float16:
|
52 |
-
pipe.unet.half()
|
53 |
-
pipe.text_encoder.half()
|
54 |
-
|
55 |
-
pipe.to(device)
|
56 |
-
|
57 |
-
else:
|
58 |
-
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
|
59 |
-
|
60 |
-
image = pipe(
|
61 |
-
prompt=prompt,
|
62 |
-
negative_prompt=negative_prompt,
|
63 |
-
guidance_scale=guidance_scale,
|
64 |
-
num_inference_steps=num_inference_steps,
|
65 |
-
width=width,
|
66 |
-
height=height,
|
67 |
-
generator=generator,
|
68 |
-
).images[0]
|
69 |
-
|
70 |
-
return image, seed
|
71 |
-
|
72 |
-
|
73 |
examples = [
|
74 |
"The image of a cartoonish mouse eating from a red bowl of yellow triangle chips, her cheeks are full. The mouse is gray with big pink ears, small white eyes and a black pointed nose. It has a simple design, the background color is white. The style of the image is reminiscent of a sticker or a digital illustration.",
|
75 |
"The image of a cartoonish mouse with red hearts instead of eyes meaning that the mouse is in love with something. The mouse is gray with big pink ears and a black pointed nose. It has a simple design, the background color is white. The style of the image is reminiscent of a sticker or a digital illustration.",
|
@@ -83,9 +18,15 @@ css = """
|
|
83 |
}
|
84 |
"""
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
with gr.Blocks(css=css) as demo:
|
87 |
with gr.Column(elem_id="col-container"):
|
88 |
-
gr.Markdown(" # Text-to-Image
|
89 |
|
90 |
MODEL_LIST = [
|
91 |
"CompVis/stable-diffusion-v1-4",
|
@@ -116,8 +57,33 @@ with gr.Blocks(css=css) as demo:
|
|
116 |
label="Negative prompt",
|
117 |
max_lines=1,
|
118 |
placeholder="Enter a negative prompt",
|
119 |
-
visible=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
)
|
|
|
|
|
121 |
|
122 |
seed = gr.Slider(
|
123 |
label="Seed",
|
@@ -177,9 +143,16 @@ with gr.Blocks(css=css) as demo:
|
|
177 |
height,
|
178 |
guidance_scale,
|
179 |
num_inference_steps,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
],
|
181 |
outputs=[result, seed],
|
182 |
)
|
183 |
|
184 |
if __name__ == "__main__":
|
185 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
+
from infer import infer, CONTROLNET_MODE
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
MAX_SEED = np.iinfo(np.int32).max
|
6 |
MAX_IMAGE_SIZE = 1024
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
examples = [
|
9 |
"The image of a cartoonish mouse eating from a red bowl of yellow triangle chips, her cheeks are full. The mouse is gray with big pink ears, small white eyes and a black pointed nose. It has a simple design, the background color is white. The style of the image is reminiscent of a sticker or a digital illustration.",
|
10 |
"The image of a cartoonish mouse with red hearts instead of eyes meaning that the mouse is in love with something. The mouse is gray with big pink ears and a black pointed nose. It has a simple design, the background color is white. The style of the image is reminiscent of a sticker or a digital illustration.",
|
|
|
18 |
}
|
19 |
"""
|
20 |
|
21 |
+
def on_checkbox_change(use_advanced):
|
22 |
+
visible = use_advanced
|
23 |
+
return (gr.update(visible=visible, interactive=visible),
|
24 |
+
gr.update(visible=visible, interactive=visible),
|
25 |
+
gr.update(visible=visible, interactive=visible))
|
26 |
+
|
27 |
with gr.Blocks(css=css) as demo:
|
28 |
with gr.Column(elem_id="col-container"):
|
29 |
+
gr.Markdown(" # Maria Lashina Text-to-Image Rat Stickers Generation App")
|
30 |
|
31 |
MODEL_LIST = [
|
32 |
"CompVis/stable-diffusion-v1-4",
|
|
|
57 |
label="Negative prompt",
|
58 |
max_lines=1,
|
59 |
placeholder="Enter a negative prompt",
|
60 |
+
visible=True,
|
61 |
+
)
|
62 |
+
|
63 |
+
use_controlnet = gr.Checkbox(label="Use ControlNet")
|
64 |
+
control_strength = gr.Slider(
|
65 |
+
label="ControlNet strength",
|
66 |
+
minimum=0,
|
67 |
+
maximum=1,
|
68 |
+
step=0.01,
|
69 |
+
value=0.8,
|
70 |
+
visible=False
|
71 |
+
)
|
72 |
+
controlnet_mode = gr.Dropdown(CONTROLNET_MODE.keys(), label="ControlNet mode", visible=False)
|
73 |
+
controlnet_image = gr.Image(label="ControlNet image", visible=False)
|
74 |
+
use_controlnet.change(on_checkbox_change, use_controlnet, [control_strength, controlnet_mode, controlnet_image])
|
75 |
+
|
76 |
+
use_ip_adapter = gr.Checkbox(label="Use IPAdapter")
|
77 |
+
ip_adapter_scale = gr.Slider(
|
78 |
+
label="IPAdapter scale",
|
79 |
+
minimum=0,
|
80 |
+
maximum=1,
|
81 |
+
step=0.01,
|
82 |
+
value=0.8,
|
83 |
+
visible=False
|
84 |
)
|
85 |
+
ip_adapter_image = gr.Image(label="IPAdapter image", visible=False)
|
86 |
+
use_advanced_ip.change(on_checkbox_change, use_advanced_ip, [ip_adapter_scale, image_upload_ip])
|
87 |
|
88 |
seed = gr.Slider(
|
89 |
label="Seed",
|
|
|
143 |
height,
|
144 |
guidance_scale,
|
145 |
num_inference_steps,
|
146 |
+
use_controlnet,
|
147 |
+
controlnet_strength,
|
148 |
+
controlnet_mode,
|
149 |
+
controlnet_image,
|
150 |
+
use_ip_adapter,
|
151 |
+
ip_adapter_scale,
|
152 |
+
ip_adapter_image
|
153 |
],
|
154 |
outputs=[result, seed],
|
155 |
)
|
156 |
|
157 |
if __name__ == "__main__":
|
158 |
+
demo.launch(share=False, debug=True)
|
infer.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import cv2 as cv
|
4 |
+
import random
|
5 |
+
import os
|
6 |
+
import spaces
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
from transformers import pipeline
|
10 |
+
from controlnet_aux import MLSDdetector, HEDdetector, NormalBaeDetector, LineartDetector
|
11 |
+
from peft import PeftModel, LoraConfig
|
12 |
+
from diffusers import (
|
13 |
+
DiffusionPipeline,
|
14 |
+
StableDiffusionPipeline,
|
15 |
+
StableDiffusionControlNetPipeline,
|
16 |
+
StableDiffusionControlNetImg2ImgPipeline,
|
17 |
+
DPMSolverMultistepScheduler,
|
18 |
+
PNDMScheduler,
|
19 |
+
ControlNetModel
|
20 |
+
)
|
21 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
22 |
+
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import rescale_noise_cfg, retrieve_timesteps
|
23 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
24 |
+
from diffusers.utils.torch_utils import randn_tensor
|
25 |
+
from diffusers.utils import load_image, make_image_grid
|
26 |
+
|
27 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
28 |
+
|
29 |
+
if torch.cuda.is_available():
|
30 |
+
torch_dtype = torch.float16
|
31 |
+
else:
|
32 |
+
torch_dtype = torch.float32
|
33 |
+
|
34 |
+
default_model = 'CompVis/stable-diffusion-v1-4'
|
35 |
+
LoRA_path = 'new_model'
|
36 |
+
|
37 |
+
CONTROLNET_MODE = {
|
38 |
+
"Canny Edge Detection" : "lllyasviel/control_v11p_sd15_canny",
|
39 |
+
"Pixel to Pixel": "lllyasviel/control_v11e_sd15_ip2p",
|
40 |
+
"HED edge detection (soft edge)" : "lllyasviel/control_sd15_hed",
|
41 |
+
"Midas depth estimation" : "lllyasviel/control_v11f1p_sd15_depth",
|
42 |
+
"Surface Normal Estimation" : "lllyasviel/control_v11p_sd15_normalbae",
|
43 |
+
"Scribble-Based Generation" : "lllyasviel/control_v11p_sd15_scribble",
|
44 |
+
"Line Art Generation": "lllyasviel/control_v11p_sd15_lineart",
|
45 |
+
}
|
46 |
+
|
47 |
+
def get_pipe(
|
48 |
+
model_id,
|
49 |
+
use_controlnet,
|
50 |
+
controlnet_mode,
|
51 |
+
use_ip_adapter
|
52 |
+
):
|
53 |
+
|
54 |
+
if use_controlnet and use_ip_adapter:
|
55 |
+
|
56 |
+
print('Pipe with ControlNet and IPAdapter')
|
57 |
+
|
58 |
+
controlnet = ControlNetModel.from_pretrained(
|
59 |
+
CONTROLNET_MODE[controlnet_mode],
|
60 |
+
cache_dir="./models_cache",
|
61 |
+
torch_dtype=torch.float16
|
62 |
+
)
|
63 |
+
|
64 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
65 |
+
model_id if model_id!='Maria_Lashina_LoRA' else default_model,
|
66 |
+
torch_dtype=torch_dtype,
|
67 |
+
controlnet=use_controlnet,
|
68 |
+
safety_checker=None,
|
69 |
+
).to(device)
|
70 |
+
|
71 |
+
pipe.load_ip_adapter(
|
72 |
+
"h94/IP-Adapter",
|
73 |
+
subfolder="models",
|
74 |
+
weight_name="ip-adapter-plus_sd14.bin",
|
75 |
+
)
|
76 |
+
|
77 |
+
elif controlnet:
|
78 |
+
|
79 |
+
print('Pipe with ControlNet')
|
80 |
+
|
81 |
+
controlnet = ControlNetModel.from_pretrained(
|
82 |
+
CONTROLNET_MODE[controlnet_mode],
|
83 |
+
cache_dir="./models_cache",
|
84 |
+
torch_dtype=torch.float16)
|
85 |
+
|
86 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
87 |
+
model_id if model_id!='Maria_Lashina_LoRA' else default_model,
|
88 |
+
torch_dtype=torch_dtype,
|
89 |
+
controlnet=use_controlnet,
|
90 |
+
safety_checker=None,
|
91 |
+
).to(device)
|
92 |
+
|
93 |
+
elif ip_adapter:
|
94 |
+
|
95 |
+
print('Pipe with IpAdapter')
|
96 |
+
|
97 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
98 |
+
model_id if model_id!='Maria_Lashina_LoRA' else default_model,
|
99 |
+
torch_dtype=torch_dtype,
|
100 |
+
safety_checker=None,
|
101 |
+
).to(device)
|
102 |
+
|
103 |
+
pipe.load_ip_adapter(
|
104 |
+
"h94/IP-Adapter",
|
105 |
+
subfolder="models",
|
106 |
+
weight_name="ip-adapter-plus_sd14.bin")
|
107 |
+
|
108 |
+
else:
|
109 |
+
|
110 |
+
print('Pipe with only SD')
|
111 |
+
|
112 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
113 |
+
model_id if model_id!='Maria_Lashina_LoRA' else default_model,
|
114 |
+
torch_dtype=torch_dtype,
|
115 |
+
safety_checker=None,
|
116 |
+
).to(device)
|
117 |
+
|
118 |
+
|
119 |
+
if model_id == 'Maria_Lashina_LoRA':
|
120 |
+
adapter_name = 'a cartoonish mouse'
|
121 |
+
unet_sub_dir = os.path.join(LoRA_path, "unet")
|
122 |
+
text_encoder_sub_dir = os.path.join(LoRA_path, "text_encoder")
|
123 |
+
|
124 |
+
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
|
125 |
+
|
126 |
+
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name)
|
127 |
+
|
128 |
+
if torch_dtype == torch.float16:
|
129 |
+
pipe.unet.half()
|
130 |
+
pipe.text_encoder.half()
|
131 |
+
|
132 |
+
return pipe
|
133 |
+
|
134 |
+
def prepare_controlnet_image(controlnet_image, mode):
|
135 |
+
if mode == "Canny Edge Detection":
|
136 |
+
image = cv.Canny(controlnet_image, 80, 160)
|
137 |
+
image = np.repeat(image[:, :, None], 3, axis=2)
|
138 |
+
image = Image.fromarray(image)
|
139 |
+
|
140 |
+
elif mode == "HED edge detection (soft edge)":
|
141 |
+
processor = HEDdetector.from_pretrained('lllyasviel/Annotators')
|
142 |
+
image = processor(controlnet_image)
|
143 |
+
|
144 |
+
elif mode == "Midas depth estimation":
|
145 |
+
depth_estimator = pipeline('depth-estimation')
|
146 |
+
image = depth_estimator(controlnet_image)['depth']
|
147 |
+
image = np.array(image)
|
148 |
+
image = image[:, :, None]
|
149 |
+
image = np.concatenate([image, image, image], axis=2)
|
150 |
+
image = Image.fromarray(image)
|
151 |
+
|
152 |
+
elif mode == "Surface Normal Estimation":
|
153 |
+
processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
|
154 |
+
image = processor(controlnet_image)
|
155 |
+
|
156 |
+
elif mode == "Scribble-Based Generation":
|
157 |
+
processor = HEDdetector.from_pretrained('lllyasviel/Annotators')
|
158 |
+
image = processor(controlnet_image, scribble=True)
|
159 |
+
|
160 |
+
elif mode == "Line Art Generation":
|
161 |
+
processor = LineartDetector.from_pretrained("lllyasviel/Annotators")
|
162 |
+
image = processor(controlnet_image)
|
163 |
+
|
164 |
+
else:
|
165 |
+
image = controlnet_image
|
166 |
+
|
167 |
+
# @spaces.GPU #[uncomment to use ZeroGPU]
|
168 |
+
def infer(
|
169 |
+
model_id,
|
170 |
+
prompt,
|
171 |
+
negative_prompt,
|
172 |
+
seed,
|
173 |
+
randomize_seed,
|
174 |
+
width,
|
175 |
+
height,
|
176 |
+
guidance_scale,
|
177 |
+
num_inference_steps,
|
178 |
+
use_controlnet,
|
179 |
+
controlnet_strength,
|
180 |
+
controlnet_mode,
|
181 |
+
controlnet_image,
|
182 |
+
use_ip_adapter,
|
183 |
+
ip_adapter_scale,
|
184 |
+
ip_adapter_image,
|
185 |
+
progress=gr.Progress(track_tqdm=True),
|
186 |
+
):
|
187 |
+
if randomize_seed:
|
188 |
+
seed = random.randint(0, MAX_SEED)
|
189 |
+
|
190 |
+
generator = torch.Generator().manual_seed(seed)
|
191 |
+
|
192 |
+
if not use_controlnet and not use_ip_adapter:
|
193 |
+
|
194 |
+
pipe = get_pipe(model_id, use_controlnet, controlnet_mode, use_ip_adapter)
|
195 |
+
|
196 |
+
image = pipe(
|
197 |
+
prompt=prompt,
|
198 |
+
negative_prompt=negative_prompt,
|
199 |
+
guidance_scale=guidance_scale,
|
200 |
+
num_inference_steps=num_inference_steps,
|
201 |
+
width=width,
|
202 |
+
height=height,
|
203 |
+
generator=generator
|
204 |
+
).images[0]
|
205 |
+
|
206 |
+
elif use_controlnet and not use_ip_adapter:
|
207 |
+
|
208 |
+
cn_image = prepare_controlnet_image(controlnet_image, controlnet_mode)
|
209 |
+
|
210 |
+
pipe = get_pipe(model_id, use_controlnet, controlnet_mode, use_ip_adapter)
|
211 |
+
|
212 |
+
image = pipe(
|
213 |
+
prompt,
|
214 |
+
cn_image,
|
215 |
+
negative_prompt=negative_prompt,
|
216 |
+
num_inference_steps = num_inference_steps,
|
217 |
+
controlnet_conditioning_scale=control_strength,
|
218 |
+
generator=generator
|
219 |
+
).images[0]
|
220 |
+
|
221 |
+
elif not use_controlnet and use_ip_adapter:
|
222 |
+
|
223 |
+
pipe = get_pipe(model_id, use_controlnet, controlnet_mode, use_ip_adapter)
|
224 |
+
|
225 |
+
pipe.set_ip_adapter_scale(ip_adapter_scale)
|
226 |
+
|
227 |
+
image = pipe(
|
228 |
+
prompt,
|
229 |
+
num_inference_steps=num_inference_steps,
|
230 |
+
guidance_scale=guidance_scale,
|
231 |
+
ip_adapter_image=ip_adapter_image,
|
232 |
+
generator=generator
|
233 |
+
).images[0]
|
234 |
+
|
235 |
+
elif use_controlnet and use_ip_adapter:
|
236 |
+
|
237 |
+
cn_image = prepare_controlnet_image(controlnet_image, controlnet_mode)
|
238 |
+
|
239 |
+
pipe = get_pipe(model_id, use_controlnet, controlnet_mode, use_ip_adapter)
|
240 |
+
|
241 |
+
pipe.set_ip_adapter_scale(ip_adapter_scale)
|
242 |
+
|
243 |
+
image = pipe(
|
244 |
+
prompt,
|
245 |
+
cn_image,
|
246 |
+
num_inference_steps=num_inference_steps,
|
247 |
+
guidance_scale=guidance_scale,
|
248 |
+
height=height,
|
249 |
+
width=width,
|
250 |
+
controlnet_conditioning_scale=control_strength,
|
251 |
+
ip_adapter_image=image_upload_ip,
|
252 |
+
generator=generator,
|
253 |
+
).images[0]
|
254 |
+
|
255 |
+
return image, seed
|