Maria
hw6
ada0ab1
raw
history blame
5.76 kB
import gradio as gr
import numpy as np
from infer import infer, CONTROLNET_MODE
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
examples = [
"The image of a cartoonish mouse eating from a red bowl of yellow triangle chips, her cheeks are full. The mouse is gray with big pink ears, small white eyes and a black pointed nose. It has a simple design, the background color is white. The style of the image is reminiscent of a sticker or a digital illustration.",
"The image of a cartoonish mouse with red hearts instead of eyes meaning that the mouse is in love with something. The mouse is gray with big pink ears and a black pointed nose. It has a simple design, the background color is white. The style of the image is reminiscent of a sticker or a digital illustration.",
"The image of a cartoonish mouse with sunglasses and smiling. The mouse is gray with big pink ears and a black pointed nose. It has a simple design, the background color is white. The style of the image is reminiscent of a sticker or a digital illustration.",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
def on_checkbox_change(use_advanced):
visible = use_advanced
return (gr.update(visible=visible, interactive=visible),
gr.update(visible=visible, interactive=visible),
gr.update(visible=visible, interactive=visible))
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Maria Lashina Text-to-Image Rat Stickers Generation App")
MODEL_LIST = [
"CompVis/stable-diffusion-v1-4",
"stable-diffusion-v1-5/stable-diffusion-v1-5",
"Maria_Lashina_LoRA"
]
with gr.Row():
model_id = gr.Dropdown(
label="Model",
choices=MODEL_LIST
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
use_controlnet = gr.Checkbox(label="Use ControlNet")
control_strength = gr.Slider(
label="ControlNet strength",
minimum=0,
maximum=1,
step=0.01,
value=0.8,
visible=False
)
controlnet_mode = gr.Dropdown(CONTROLNET_MODE.keys(), label="ControlNet mode", visible=False)
controlnet_image = gr.Image(label="ControlNet image", visible=False)
use_controlnet.change(on_checkbox_change, use_controlnet, [control_strength, controlnet_mode, controlnet_image])
use_ip_adapter = gr.Checkbox(label="Use IPAdapter")
ip_adapter_scale = gr.Slider(
label="IPAdapter scale",
minimum=0,
maximum=1,
step=0.01,
value=0.8,
visible=False
)
ip_adapter_image = gr.Image(label="IPAdapter image", visible=False)
use_advanced_ip.change(on_checkbox_change, use_advanced_ip, [ip_adapter_scale, image_upload_ip])
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.0, # Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=20, # Replace with defaults that work for your model
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
model_id,
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
use_controlnet,
controlnet_strength,
controlnet_mode,
controlnet_image,
use_ip_adapter,
ip_adapter_scale,
ip_adapter_image
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch(share=False, debug=True)