INTEL / app.py
malvika2003's picture
Update app.py
4e022f4 verified
import os
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
from threading import Thread
from time import perf_counter
from typing import List
from transformers import TextIteratorStreamer
import numpy as np
# Model configuration and loading
model_name = "susnato/phi-2" # Replace this with your Hugging Face model ID if necessary
model_configuration = {
"prompt_template": "{instruction}",
"toeknizer_kwargs": {},
"response_key": "### Response",
"end_key": "### End"
}
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer_kwargs = model_configuration.get("toeknizer_kwargs", {})
response_key = model_configuration.get("response_key")
tokenizer_response_key = None
def get_special_token_id(tokenizer: AutoTokenizer, key: str) -> int:
token_ids = tokenizer.encode(key)
if len(token_ids) > 1:
raise ValueError(f"Expected only a single token for '{key}' but found {token_ids}")
return token_ids[0]
if response_key is not None:
tokenizer_response_key = next(
(token for token in tokenizer.additional_special_tokens if token.startswith(response_key)),
None,
)
end_key_token_id = None
if tokenizer_response_key:
try:
end_key = model_configuration.get("end_key")
if end_key:
end_key_token_id = get_special_token_id(tokenizer, end_key)
except ValueError:
pass
prompt_template = model_configuration.get("prompt_template", "{instruction}")
end_key_token_id = end_key_token_id or tokenizer.eos_token_id
pad_token_id = end_key_token_id or tokenizer.pad_token_id
def estimate_latency(
current_time: float,
current_perf_text: str,
new_gen_text: str,
per_token_time: List[float],
num_tokens: int,
):
num_current_toks = len(tokenizer.encode(new_gen_text))
num_tokens += num_current_toks
per_token_time.append(num_current_toks / current_time)
if len(per_token_time) > 10 and len(per_token_time) % 4 == 0:
current_bucket = per_token_time[:-10]
return (
f"Average generation speed: {np.mean(current_bucket):.2f} tokens/s. Total generated tokens: {num_tokens}",
num_tokens,
)
return current_perf_text, num_tokens
def run_generation(
user_text: str,
top_p: float,
temperature: float,
top_k: int,
max_new_tokens: int,
perf_text: str,
):
prompt_text = prompt_template.format(instruction=user_text)
model_inputs = tokenizer(prompt_text, return_tensors="pt", **tokenizer_kwargs)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
temperature=float(temperature),
top_k=top_k,
eos_token_id=end_key_token_id,
pad_token_id=pad_token_id,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
model_output = ""
per_token_time = []
num_tokens = 0
start = perf_counter()
for new_text in streamer:
current_time = perf_counter() - start
model_output += new_text
perf_text, num_tokens = estimate_latency(current_time, perf_text, new_text, per_token_time, num_tokens)
yield model_output, perf_text
start = perf_counter()
return model_output, perf_text
def reset_textbox(instruction: str, response: str, perf: str):
return "", "", ""
examples = [
"Give me a recipe for pizza with pineapple",
"Write me a tweet about the new OpenVINO release",
"Explain the difference between CPU and GPU",
"Give five ideas for a great weekend with family",
"Do Androids dream of Electric sheep?",
"Who is Dolly?",
"Please give me advice on how to write resume?",
"Name 3 advantages to being a cat",
"Write instructions on how to become a good AI engineer",
"Write a love letter to my best friend",
]
def main():
with gr.Blocks() as demo:
gr.Markdown(
"# Question Answering with Model.\n"
"Provide instruction which describes a task below or select among predefined examples and model writes response that performs requested task."
)
with gr.Row():
with gr.Column(scale=4):
user_text = gr.Textbox(
placeholder="Write an email about an alpaca that likes flan",
label="User instruction",
)
model_output = gr.Textbox(label="Model response", interactive=False)
performance = gr.Textbox(label="Performance", lines=1, interactive=False)
with gr.Column(scale=1):
button_clear = gr.Button(value="Clear")
button_submit = gr.Button(value="Submit")
gr.Examples(examples, user_text)
with gr.Column(scale=1):
max_new_tokens = gr.Slider(
minimum=1,
maximum=1000,
value=256,
step=1,
interactive=True,
label="Max New Tokens",
)
top_p = gr.Slider(
minimum=0.05,
maximum=1.0,
value=0.92,
step=0.05,
interactive=True,
label="Top-p (nucleus sampling)",
)
top_k = gr.Slider(
minimum=0,
maximum=50,
value=0,
step=1,
interactive=True,
label="Top-k",
)
temperature = gr.Slider(
minimum=0.1,
maximum=5.0,
value=0.8,
step=0.1,
interactive=True,
label="Temperature",
)
user_text.submit(
run_generation,
[user_text, top_p, temperature, top_k, max_new_tokens, performance],
[model_output, performance],
)
button_submit.click(
run_generation,
[user_text, top_p, temperature, top_k, max_new_tokens, performance],
[model_output, performance],
)
button_clear.click(
reset_textbox,
[user_text, model_output, performance],
[user_text, model_output, performance],
)
demo.queue()
try:
demo.launch(height=800)
except Exception:
demo.launch(share=True, height=800)
if __name__ == "__main__":
main()