Spaces:
Runtime error
Runtime error
File size: 6,761 Bytes
af25edf 2ecd7b6 af25edf 0d5912e af25edf 0d5912e 4e022f4 620a079 af25edf 0d5912e 4e022f4 af25edf 0d5912e af25edf 0d5912e af25edf 0d5912e af25edf 2ecd7b6 af25edf 0d5912e af25edf 2ecd7b6 af25edf 0d5912e 2ecd7b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import os
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
from threading import Thread
from time import perf_counter
from typing import List
from transformers import TextIteratorStreamer
import numpy as np
# Model configuration and loading
model_name = "susnato/phi-2" # Replace this with your Hugging Face model ID if necessary
model_configuration = {
"prompt_template": "{instruction}",
"toeknizer_kwargs": {},
"response_key": "### Response",
"end_key": "### End"
}
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer_kwargs = model_configuration.get("toeknizer_kwargs", {})
response_key = model_configuration.get("response_key")
tokenizer_response_key = None
def get_special_token_id(tokenizer: AutoTokenizer, key: str) -> int:
token_ids = tokenizer.encode(key)
if len(token_ids) > 1:
raise ValueError(f"Expected only a single token for '{key}' but found {token_ids}")
return token_ids[0]
if response_key is not None:
tokenizer_response_key = next(
(token for token in tokenizer.additional_special_tokens if token.startswith(response_key)),
None,
)
end_key_token_id = None
if tokenizer_response_key:
try:
end_key = model_configuration.get("end_key")
if end_key:
end_key_token_id = get_special_token_id(tokenizer, end_key)
except ValueError:
pass
prompt_template = model_configuration.get("prompt_template", "{instruction}")
end_key_token_id = end_key_token_id or tokenizer.eos_token_id
pad_token_id = end_key_token_id or tokenizer.pad_token_id
def estimate_latency(
current_time: float,
current_perf_text: str,
new_gen_text: str,
per_token_time: List[float],
num_tokens: int,
):
num_current_toks = len(tokenizer.encode(new_gen_text))
num_tokens += num_current_toks
per_token_time.append(num_current_toks / current_time)
if len(per_token_time) > 10 and len(per_token_time) % 4 == 0:
current_bucket = per_token_time[:-10]
return (
f"Average generation speed: {np.mean(current_bucket):.2f} tokens/s. Total generated tokens: {num_tokens}",
num_tokens,
)
return current_perf_text, num_tokens
def run_generation(
user_text: str,
top_p: float,
temperature: float,
top_k: int,
max_new_tokens: int,
perf_text: str,
):
prompt_text = prompt_template.format(instruction=user_text)
model_inputs = tokenizer(prompt_text, return_tensors="pt", **tokenizer_kwargs)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
temperature=float(temperature),
top_k=top_k,
eos_token_id=end_key_token_id,
pad_token_id=pad_token_id,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
model_output = ""
per_token_time = []
num_tokens = 0
start = perf_counter()
for new_text in streamer:
current_time = perf_counter() - start
model_output += new_text
perf_text, num_tokens = estimate_latency(current_time, perf_text, new_text, per_token_time, num_tokens)
yield model_output, perf_text
start = perf_counter()
return model_output, perf_text
def reset_textbox(instruction: str, response: str, perf: str):
return "", "", ""
examples = [
"Give me a recipe for pizza with pineapple",
"Write me a tweet about the new OpenVINO release",
"Explain the difference between CPU and GPU",
"Give five ideas for a great weekend with family",
"Do Androids dream of Electric sheep?",
"Who is Dolly?",
"Please give me advice on how to write resume?",
"Name 3 advantages to being a cat",
"Write instructions on how to become a good AI engineer",
"Write a love letter to my best friend",
]
def main():
with gr.Blocks() as demo:
gr.Markdown(
"# Question Answering with Model.\n"
"Provide instruction which describes a task below or select among predefined examples and model writes response that performs requested task."
)
with gr.Row():
with gr.Column(scale=4):
user_text = gr.Textbox(
placeholder="Write an email about an alpaca that likes flan",
label="User instruction",
)
model_output = gr.Textbox(label="Model response", interactive=False)
performance = gr.Textbox(label="Performance", lines=1, interactive=False)
with gr.Column(scale=1):
button_clear = gr.Button(value="Clear")
button_submit = gr.Button(value="Submit")
gr.Examples(examples, user_text)
with gr.Column(scale=1):
max_new_tokens = gr.Slider(
minimum=1,
maximum=1000,
value=256,
step=1,
interactive=True,
label="Max New Tokens",
)
top_p = gr.Slider(
minimum=0.05,
maximum=1.0,
value=0.92,
step=0.05,
interactive=True,
label="Top-p (nucleus sampling)",
)
top_k = gr.Slider(
minimum=0,
maximum=50,
value=0,
step=1,
interactive=True,
label="Top-k",
)
temperature = gr.Slider(
minimum=0.1,
maximum=5.0,
value=0.8,
step=0.1,
interactive=True,
label="Temperature",
)
user_text.submit(
run_generation,
[user_text, top_p, temperature, top_k, max_new_tokens, performance],
[model_output, performance],
)
button_submit.click(
run_generation,
[user_text, top_p, temperature, top_k, max_new_tokens, performance],
[model_output, performance],
)
button_clear.click(
reset_textbox,
[user_text, model_output, performance],
[user_text, model_output, performance],
)
demo.queue()
try:
demo.launch(height=800)
except Exception:
demo.launch(share=True, height=800)
if __name__ == "__main__":
main()
|