File size: 6,761 Bytes
af25edf
2ecd7b6
af25edf
 
 
 
0d5912e
af25edf
 
0d5912e
4e022f4
620a079
 
 
 
 
 
af25edf
0d5912e
4e022f4
af25edf
 
 
 
 
 
 
 
 
0d5912e
af25edf
 
 
 
 
 
 
 
 
 
 
0d5912e
af25edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d5912e
af25edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ecd7b6
af25edf
 
 
 
 
 
 
 
 
 
 
 
 
0d5912e
af25edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ecd7b6
af25edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d5912e
 
 
 
 
 
 
 
2ecd7b6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
from threading import Thread
from time import perf_counter
from typing import List
from transformers import TextIteratorStreamer
import numpy as np

# Model configuration and loading
model_name = "susnato/phi-2"  # Replace this with your Hugging Face model ID if necessary
model_configuration = {
    "prompt_template": "{instruction}",
    "toeknizer_kwargs": {},
    "response_key": "### Response",
    "end_key": "### End"
}

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer_kwargs = model_configuration.get("toeknizer_kwargs", {})
response_key = model_configuration.get("response_key")
tokenizer_response_key = None

def get_special_token_id(tokenizer: AutoTokenizer, key: str) -> int:
    token_ids = tokenizer.encode(key)
    if len(token_ids) > 1:
        raise ValueError(f"Expected only a single token for '{key}' but found {token_ids}")
    return token_ids[0]

if response_key is not None:
    tokenizer_response_key = next(
        (token for token in tokenizer.additional_special_tokens if token.startswith(response_key)),
        None,
    )

end_key_token_id = None
if tokenizer_response_key:
    try:
        end_key = model_configuration.get("end_key")
        if end_key:
            end_key_token_id = get_special_token_id(tokenizer, end_key)
    except ValueError:
        pass

prompt_template = model_configuration.get("prompt_template", "{instruction}")
end_key_token_id = end_key_token_id or tokenizer.eos_token_id
pad_token_id = end_key_token_id or tokenizer.pad_token_id

def estimate_latency(
    current_time: float,
    current_perf_text: str,
    new_gen_text: str,
    per_token_time: List[float],
    num_tokens: int,
):
    num_current_toks = len(tokenizer.encode(new_gen_text))
    num_tokens += num_current_toks
    per_token_time.append(num_current_toks / current_time)
    if len(per_token_time) > 10 and len(per_token_time) % 4 == 0:
        current_bucket = per_token_time[:-10]
        return (
            f"Average generation speed: {np.mean(current_bucket):.2f} tokens/s. Total generated tokens: {num_tokens}",
            num_tokens,
        )
    return current_perf_text, num_tokens

def run_generation(
    user_text: str,
    top_p: float,
    temperature: float,
    top_k: int,
    max_new_tokens: int,
    perf_text: str,
):
    prompt_text = prompt_template.format(instruction=user_text)
    model_inputs = tokenizer(prompt_text, return_tensors="pt", **tokenizer_kwargs)
    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        model_inputs,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        temperature=float(temperature),
        top_k=top_k,
        eos_token_id=end_key_token_id,
        pad_token_id=pad_token_id,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()
    model_output = ""
    per_token_time = []
    num_tokens = 0
    start = perf_counter()
    for new_text in streamer:
        current_time = perf_counter() - start
        model_output += new_text
        perf_text, num_tokens = estimate_latency(current_time, perf_text, new_text, per_token_time, num_tokens)
        yield model_output, perf_text
        start = perf_counter()
    return model_output, perf_text

def reset_textbox(instruction: str, response: str, perf: str):
    return "", "", ""

examples = [
    "Give me a recipe for pizza with pineapple",
    "Write me a tweet about the new OpenVINO release",
    "Explain the difference between CPU and GPU",
    "Give five ideas for a great weekend with family",
    "Do Androids dream of Electric sheep?",
    "Who is Dolly?",
    "Please give me advice on how to write resume?",
    "Name 3 advantages to being a cat",
    "Write instructions on how to become a good AI engineer",
    "Write a love letter to my best friend",
]

def main():
    with gr.Blocks() as demo:
        gr.Markdown(
            "# Question Answering with Model.\n"
            "Provide instruction which describes a task below or select among predefined examples and model writes response that performs requested task."
        )

        with gr.Row():
            with gr.Column(scale=4):
                user_text = gr.Textbox(
                    placeholder="Write an email about an alpaca that likes flan",
                    label="User instruction",
                )
                model_output = gr.Textbox(label="Model response", interactive=False)
                performance = gr.Textbox(label="Performance", lines=1, interactive=False)
                with gr.Column(scale=1):
                    button_clear = gr.Button(value="Clear")
                    button_submit = gr.Button(value="Submit")
                gr.Examples(examples, user_text)
            with gr.Column(scale=1):
                max_new_tokens = gr.Slider(
                    minimum=1,
                    maximum=1000,
                    value=256,
                    step=1,
                    interactive=True,
                    label="Max New Tokens",
                )
                top_p = gr.Slider(
                    minimum=0.05,
                    maximum=1.0,
                    value=0.92,
                    step=0.05,
                    interactive=True,
                    label="Top-p (nucleus sampling)",
                )
                top_k = gr.Slider(
                    minimum=0,
                    maximum=50,
                    value=0,
                    step=1,
                    interactive=True,
                    label="Top-k",
                )
                temperature = gr.Slider(
                    minimum=0.1,
                    maximum=5.0,
                    value=0.8,
                    step=0.1,
                    interactive=True,
                    label="Temperature",
                )

        user_text.submit(
            run_generation,
            [user_text, top_p, temperature, top_k, max_new_tokens, performance],
            [model_output, performance],
        )
        button_submit.click(
            run_generation,
            [user_text, top_p, temperature, top_k, max_new_tokens, performance],
            [model_output, performance],
        )
        button_clear.click(
            reset_textbox,
            [user_text, model_output, performance],
            [user_text, model_output, performance],
        )

    demo.queue()
    try:
        demo.launch(height=800)
    except Exception:
        demo.launch(share=True, height=800)

if __name__ == "__main__":
    main()