Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,67 +1,38 @@
|
|
1 |
import os
|
2 |
-
from transformers import AutoTokenizer
|
3 |
from optimum.intel.openvino import OVModelForCausalLM
|
4 |
-
from generation_utils import run_generation, estimate_latency, reset_textbox,get_special_token_id
|
5 |
from config import SUPPORTED_LLM_MODELS
|
6 |
import gradio as gr
|
7 |
from threading import Thread
|
8 |
from time import perf_counter
|
9 |
from typing import List
|
10 |
-
from transformers import
|
11 |
import numpy as np
|
12 |
-
import os
|
13 |
-
from flask import Flask, render_template, redirect, url_for, request, flash
|
14 |
-
from flask_sqlalchemy import SQLAlchemy
|
15 |
-
from flask_login import LoginManager, UserMixin, login_user, login_required, logout_user, current_user
|
16 |
-
from werkzeug.security import generate_password_hash, check_password_hash
|
17 |
-
|
18 |
-
app = Flask(__name__)
|
19 |
-
|
20 |
-
|
21 |
-
if __name__ == '__main__':
|
22 |
-
app.run(debug=True)
|
23 |
-
model_dir = "C:/phi-2/INT8_compressed_weights"
|
24 |
-
print(f"Checking model directory: {model_dir}")
|
25 |
-
print(f"Contents: {os.listdir(model_dir)}") # Check contents of the directory
|
26 |
-
|
27 |
-
print(f"Loading model from {model_dir}")
|
28 |
-
|
29 |
|
|
|
|
|
30 |
model_name = "susnato/phi-2"
|
31 |
model_configuration = SUPPORTED_LLM_MODELS["phi-2"]
|
32 |
ov_config = {"PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": ""}
|
33 |
|
34 |
-
|
35 |
|
36 |
ov_model = OVModelForCausalLM.from_pretrained(
|
37 |
model_dir,
|
38 |
device="CPU",
|
39 |
ov_config=ov_config,
|
40 |
)
|
41 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
42 |
tokenizer_kwargs = model_configuration.get("toeknizer_kwargs", {})
|
43 |
-
# Continue with your tokenizer usage
|
44 |
response_key = model_configuration.get("response_key")
|
45 |
tokenizer_response_key = None
|
46 |
|
47 |
def get_special_token_id(tokenizer: AutoTokenizer, key: str) -> int:
|
48 |
-
"""
|
49 |
-
Gets the token ID for a given string that has been added to the tokenizer as a special token.
|
50 |
-
|
51 |
-
Args:
|
52 |
-
tokenizer (PreTrainedTokenizer): the tokenizer
|
53 |
-
key (str): the key to convert to a single token
|
54 |
-
|
55 |
-
Raises:
|
56 |
-
ValueError: if more than one ID was generated
|
57 |
-
|
58 |
-
Returns:
|
59 |
-
int: the token ID for the given key
|
60 |
-
"""
|
61 |
token_ids = tokenizer.encode(key)
|
62 |
if len(token_ids) > 1:
|
63 |
raise ValueError(f"Expected only a single token for '{key}' but found {token_ids}")
|
64 |
return token_ids[0]
|
|
|
65 |
if response_key is not None:
|
66 |
tokenizer_response_key = next(
|
67 |
(token for token in tokenizer.additional_special_tokens if token.startswith(response_key)),
|
@@ -73,8 +44,7 @@ if tokenizer_response_key:
|
|
73 |
try:
|
74 |
end_key = model_configuration.get("end_key")
|
75 |
if end_key:
|
76 |
-
end_key_token_id =get_special_token_id(tokenizer, end_key)
|
77 |
-
# Ensure generation stops once it generates "### End"
|
78 |
except ValueError:
|
79 |
pass
|
80 |
|
@@ -89,20 +59,6 @@ def estimate_latency(
|
|
89 |
per_token_time: List[float],
|
90 |
num_tokens: int,
|
91 |
):
|
92 |
-
"""
|
93 |
-
Helper function for performance estimation
|
94 |
-
|
95 |
-
Parameters:
|
96 |
-
current_time (float): This step time in seconds.
|
97 |
-
current_perf_text (str): Current content of performance UI field.
|
98 |
-
new_gen_text (str): New generated text.
|
99 |
-
per_token_time (List[float]): history of performance from previous steps.
|
100 |
-
num_tokens (int): Total number of generated tokens.
|
101 |
-
|
102 |
-
Returns:
|
103 |
-
update for performance text field
|
104 |
-
update for a total number of tokens
|
105 |
-
"""
|
106 |
num_current_toks = len(tokenizer.encode(new_gen_text))
|
107 |
num_tokens += num_current_toks
|
108 |
per_token_time.append(num_current_toks / current_time)
|
@@ -113,6 +69,7 @@ def estimate_latency(
|
|
113 |
num_tokens,
|
114 |
)
|
115 |
return current_perf_text, num_tokens
|
|
|
116 |
def run_generation(
|
117 |
user_text: str,
|
118 |
top_p: float,
|
@@ -121,29 +78,8 @@ def run_generation(
|
|
121 |
max_new_tokens: int,
|
122 |
perf_text: str,
|
123 |
):
|
124 |
-
"""
|
125 |
-
Text generation function
|
126 |
-
|
127 |
-
Parameters:
|
128 |
-
user_text (str): User-provided instruction for a generation.
|
129 |
-
top_p (float): Nucleus sampling. If set to < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for a generation.
|
130 |
-
temperature (float): The value used to module the logits distribution.
|
131 |
-
top_k (int): The number of highest probability vocabulary tokens to keep for top-k-filtering.
|
132 |
-
max_new_tokens (int): Maximum length of generated sequence.
|
133 |
-
perf_text (str): Content of text field for printing performance results.
|
134 |
-
Returns:
|
135 |
-
model_output (str) - model-generated text
|
136 |
-
perf_text (str) - updated perf text filed content
|
137 |
-
"""
|
138 |
-
|
139 |
-
# Prepare input prompt according to model expected template
|
140 |
prompt_text = prompt_template.format(instruction=user_text)
|
141 |
-
|
142 |
-
# Tokenize the user text.
|
143 |
model_inputs = tokenizer(prompt_text, return_tensors="pt", **tokenizer_kwargs)
|
144 |
-
|
145 |
-
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer
|
146 |
-
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread.
|
147 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
148 |
generate_kwargs = dict(
|
149 |
model_inputs,
|
@@ -158,8 +94,6 @@ def run_generation(
|
|
158 |
)
|
159 |
t = Thread(target=ov_model.generate, kwargs=generate_kwargs)
|
160 |
t.start()
|
161 |
-
|
162 |
-
# Pull the generated text from the streamer, and update the model output.
|
163 |
model_output = ""
|
164 |
per_token_time = []
|
165 |
num_tokens = 0
|
@@ -171,22 +105,10 @@ def run_generation(
|
|
171 |
yield model_output, perf_text
|
172 |
start = perf_counter()
|
173 |
return model_output, perf_text
|
174 |
-
def reset_textbox(instruction: str, response: str, perf: str):
|
175 |
-
"""
|
176 |
-
Helper function for resetting content of all text fields
|
177 |
|
178 |
-
|
179 |
-
instruction (str): Content of user instruction field.
|
180 |
-
response (str): Content of model response field.
|
181 |
-
perf (str): Content of performance info filed
|
182 |
-
|
183 |
-
Returns:
|
184 |
-
empty string for each placeholder
|
185 |
-
"""
|
186 |
return "", "", ""
|
187 |
|
188 |
-
|
189 |
-
|
190 |
examples = [
|
191 |
"Give me a recipe for pizza with pineapple",
|
192 |
"Write me a tweet about the new OpenVINO release",
|
@@ -269,12 +191,12 @@ def main():
|
|
269 |
[user_text, model_output, performance],
|
270 |
)
|
271 |
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
|
|
|
|
278 |
|
279 |
-
# Call main function to start Gradio interface
|
280 |
-
main()
|
|
|
1 |
import os
|
2 |
+
from transformers import AutoTokenizer
|
3 |
from optimum.intel.openvino import OVModelForCausalLM
|
4 |
+
from generation_utils import run_generation, estimate_latency, reset_textbox, get_special_token_id
|
5 |
from config import SUPPORTED_LLM_MODELS
|
6 |
import gradio as gr
|
7 |
from threading import Thread
|
8 |
from time import perf_counter
|
9 |
from typing import List
|
10 |
+
from transformers import TextIteratorStreamer
|
11 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
# Model configuration and loading
|
14 |
+
model_dir = "C:/Users/KIIT/OneDrive/Desktop/INTEL/phi-2/INT8_compressed_weights"
|
15 |
model_name = "susnato/phi-2"
|
16 |
model_configuration = SUPPORTED_LLM_MODELS["phi-2"]
|
17 |
ov_config = {"PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": ""}
|
18 |
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
20 |
|
21 |
ov_model = OVModelForCausalLM.from_pretrained(
|
22 |
model_dir,
|
23 |
device="CPU",
|
24 |
ov_config=ov_config,
|
25 |
)
|
|
|
26 |
tokenizer_kwargs = model_configuration.get("toeknizer_kwargs", {})
|
|
|
27 |
response_key = model_configuration.get("response_key")
|
28 |
tokenizer_response_key = None
|
29 |
|
30 |
def get_special_token_id(tokenizer: AutoTokenizer, key: str) -> int:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
token_ids = tokenizer.encode(key)
|
32 |
if len(token_ids) > 1:
|
33 |
raise ValueError(f"Expected only a single token for '{key}' but found {token_ids}")
|
34 |
return token_ids[0]
|
35 |
+
|
36 |
if response_key is not None:
|
37 |
tokenizer_response_key = next(
|
38 |
(token for token in tokenizer.additional_special_tokens if token.startswith(response_key)),
|
|
|
44 |
try:
|
45 |
end_key = model_configuration.get("end_key")
|
46 |
if end_key:
|
47 |
+
end_key_token_id = get_special_token_id(tokenizer, end_key)
|
|
|
48 |
except ValueError:
|
49 |
pass
|
50 |
|
|
|
59 |
per_token_time: List[float],
|
60 |
num_tokens: int,
|
61 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
num_current_toks = len(tokenizer.encode(new_gen_text))
|
63 |
num_tokens += num_current_toks
|
64 |
per_token_time.append(num_current_toks / current_time)
|
|
|
69 |
num_tokens,
|
70 |
)
|
71 |
return current_perf_text, num_tokens
|
72 |
+
|
73 |
def run_generation(
|
74 |
user_text: str,
|
75 |
top_p: float,
|
|
|
78 |
max_new_tokens: int,
|
79 |
perf_text: str,
|
80 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
prompt_text = prompt_template.format(instruction=user_text)
|
|
|
|
|
82 |
model_inputs = tokenizer(prompt_text, return_tensors="pt", **tokenizer_kwargs)
|
|
|
|
|
|
|
83 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
84 |
generate_kwargs = dict(
|
85 |
model_inputs,
|
|
|
94 |
)
|
95 |
t = Thread(target=ov_model.generate, kwargs=generate_kwargs)
|
96 |
t.start()
|
|
|
|
|
97 |
model_output = ""
|
98 |
per_token_time = []
|
99 |
num_tokens = 0
|
|
|
105 |
yield model_output, perf_text
|
106 |
start = perf_counter()
|
107 |
return model_output, perf_text
|
|
|
|
|
|
|
108 |
|
109 |
+
def reset_textbox(instruction: str, response: str, perf: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
return "", "", ""
|
111 |
|
|
|
|
|
112 |
examples = [
|
113 |
"Give me a recipe for pizza with pineapple",
|
114 |
"Write me a tweet about the new OpenVINO release",
|
|
|
191 |
[user_text, model_output, performance],
|
192 |
)
|
193 |
|
194 |
+
demo.queue()
|
195 |
+
try:
|
196 |
+
demo.launch(height=800)
|
197 |
+
except Exception:
|
198 |
+
demo.launch(share=True, height=800)
|
199 |
+
|
200 |
+
if __name__ == "__main__":
|
201 |
+
main()
|
202 |
|
|
|
|