metanice / app.py
mac9087's picture
Update app.py
0426b81 verified
from flask import Flask, request, jsonify, send_file
from flask_cors import CORS
from faster_whisper import WhisperModel
from transformers import pipeline
from TTS.api import TTS
import tempfile
import os
import re
import base64
import threading
import functools
import time
from cachetools import LRUCache, cached, TTLCache
import gc
import psutil
app = Flask(__name__)
CORS(app)
# Global configuration for low CPU environment
MODEL_CACHE_SIZE = 200 # Increased cache size to reduce recomputation
MODEL_CACHE_TTL = 7200 # Increased cache TTL to 2 hours
USE_GPU = False # No GPU available
# Load models lazily
whisper_model = None
llm = None
tts = None
models_loaded = False
models_lock = threading.Lock()
# Initialize caches
response_cache = TTLCache(maxsize=MODEL_CACHE_SIZE, ttl=MODEL_CACHE_TTL)
def load_models():
"""Load models optimized for low CPU environments"""
global whisper_model, llm, tts, models_loaded
if models_loaded:
return
with models_lock:
if models_loaded: # Double-check to avoid race condition
return
print("Loading models for low-resource environment...")
start_time = time.time()
# Force garbage collection before loading models
gc.collect()
# Choose smallest/fastest model options and optimize for CPU
device = "cpu" # Force CPU for limited resources
compute_type = "int8" # Use int8 quantization for faster inference
# Monitor memory usage
def log_memory():
process = psutil.Process(os.getpid())
memory_info = process.memory_info()
memory_mb = memory_info.rss / 1024 / 1024
print(f"Memory usage: {memory_mb:.2f} MB")
# Load whisper model first (most critical for voice input)
print("Loading whisper model...")
log_memory()
whisper_model = WhisperModel("tiny", device=device, compute_type=compute_type)
# Load LLM next
print("Loading language model...")
log_memory()
llm = pipeline(
"text-generation",
model="tiiuae/falcon-rw-1b", # Consider switching to a smaller model if available
max_new_tokens=30, # Reduced token count for faster generation
device=-1, # Force CPU
)
# Finally load TTS
print("Loading TTS model...")
log_memory()
tts = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC",
progress_bar=False,
gpu=False)
# Force garbage collection again after loading
gc.collect()
models_loaded = True
log_memory()
print(f"Models loaded in {time.time() - start_time:.2f} seconds")
@cached(cache=response_cache)
def generate_ai_response(user_input):
"""
Generate AI responses with caching to avoid repetitive processing.
Optimized for low CPU environments.
"""
load_models() # Ensure models are loaded
# Handle empty or too short input
if not user_input or len(user_input.strip()) < 2:
return "I'm listening. Please say more."
# Normalize and simplify input to improve cache hits
normalized_input = user_input.lower().strip()
# Check for very similar recent inputs to maximize cache usage
for cached_input in response_cache.keys():
if cached_input and normalized_input and (
cached_input.lower() in normalized_input or
normalized_input in cached_input.lower() or
levenshtein_distance(normalized_input, cached_input.lower()) < 5):
print(f"Using cached similar response for: {cached_input}")
return response_cache[cached_input]
try:
# Start with a small timeout for real-time experience
start_time = time.time()
timeout = 3.0 # 3 seconds max for real-time response
# Generate response with monitoring
raw_response = llm(user_input, max_new_tokens=30)[0]["generated_text"]
# Check if we're taking too long
elapsed = time.time() - start_time
if elapsed > timeout:
print(f"Response generation taking too long: {elapsed:.2f}s")
return "Let me think about that for a moment."
# Process to get clean, short response
final_response = process_response(user_input, raw_response)
# Force garbage collection after processing to keep memory usage low
gc.collect()
return final_response
except Exception as e:
print(f"Error generating AI response: {str(e)}")
# Return a default response if anything goes wrong
return "I heard you, but I'm having trouble forming a response right now."
def levenshtein_distance(s1, s2):
"""
Calculate simple string similarity for cache optimization.
A simpler implementation than full Levenshtein to save CPU cycles.
"""
if len(s1) < len(s2):
return levenshtein_distance(s2, s1)
if not s2:
return len(s1)
previous_row = range(len(s2) + 1)
for i, c1 in enumerate(s1):
current_row = [i + 1]
for j, c2 in enumerate(s2):
insertions = previous_row[j + 1] + 1
deletions = current_row[j] + 1
substitutions = previous_row[j] + (c1 != c2)
current_row.append(min(insertions, deletions, substitutions))
previous_row = current_row
return previous_row[-1]
def process_response(input_text, generated_text):
"""Optimized response processing function"""
# Handle the case where generated_text might be None
if not generated_text:
return "I'm not sure what to say about that."
# Make sure both are strings
input_text = str(input_text).strip()
generated_text = str(generated_text).strip()
# Skip empty input
if not input_text:
clean_response = generated_text
# Remove the input text from the beginning of the response
elif generated_text.startswith(input_text):
clean_response = generated_text[len(input_text):].strip()
else:
clean_response = generated_text.strip()
# If we ended up with nothing, provide a default response
if not clean_response:
return "I'm listening."
# Split into sentences more efficiently
sentences = re.split(r'(?<=[.!?])\s+', clean_response)
# Filter out empty or very short sentences
meaningful_sentences = [s for s in sentences if len(s) > 5]
# Take just 1-2 sentences for a casual, human-like response
if meaningful_sentences:
if len(meaningful_sentences) > 2:
result = " ".join(meaningful_sentences[:2])
else:
result = " ".join(meaningful_sentences)
else:
# If no meaningful sentences, but we have short sentences, use those
short_sentences = [s for s in sentences if s.strip()]
if short_sentences:
result = " ".join(short_sentences[:2])
else:
# Fallback if no good sentences were found
result = "I'm not sure what to say about that."
# Remove any repetitive phrases
result = remove_repetitions(result)
# Normalize quotes to ASCII equivalents
result = normalize_quotes(result)
return result
def normalize_quotes(text):
"""Replace curly quotes with straight quotes - optimized version"""
replacements = {
'"': '"', '"': '"',
''': "'", ''': "'"
}
for old, new in replacements.items():
text = text.replace(old, new)
return text
def remove_repetitions(text):
"""Optimized repetition removal function"""
words = text.split()
if len(words) <= 5: # Don't process very short responses
return text
result = []
text_so_far = ""
for i in range(len(words)):
# Check if this word starts a repeated phrase
if i < len(words) - 3: # Need at least 3 words to check for repetition
# Check if next 3+ words appear earlier in the text
is_repetition = False
for j in range(3, min(10, len(words) - i)): # Check phrases of length 3 to 10
phrase = " ".join(words[i:i+j])
if phrase in text_so_far:
is_repetition = True
break
if not is_repetition:
result.append(words[i])
text_so_far += words[i] + " "
else:
result.append(words[i])
text_so_far += words[i] + " "
return " ".join(result)
@app.route("/talk", methods=["POST"])
def talk():
"""Optimized voice API endpoint for low-resource environments"""
if "audio" not in request.files:
return jsonify({"error": "No audio file"}), 400
# Get current memory usage
process = psutil.Process(os.getpid())
memory_before = process.memory_info().rss / 1024 / 1024
print(f"Memory before processing: {memory_before:.2f} MB")
# Ensure models are loaded
load_models()
# Start timing for end-to-end processing
start_time = time.time()
# Save audio
audio_file = request.files["audio"]
try:
# Use in-memory processing when possible to avoid disk I/O
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
audio_path = tmp.name
audio_file.save(audio_path)
# Transcribe with optimized settings
try:
# Set beam_size=1 for faster transcription with slight accuracy trade-off
segments, _ = whisper_model.transcribe(
audio_path,
beam_size=1,
vad_filter=True, # Filter out non-speech
language="en" # Specify language if known
)
transcription = "".join([seg.text for seg in segments])
print(f"Transcription: {transcription}")
print(f"Transcription time: {time.time() - start_time:.2f}s")
if not transcription.strip():
final_response = "I didn't catch that. Could you please speak again?"
else:
# Use the cached response generator
final_response = generate_ai_response(transcription)
print(f"Voice response: {final_response}")
print(f"Response generation time: {time.time() - start_time:.2f}s")
# Cache frequently used responses as pre-synthesized audio files
response_hash = str(hash(final_response))
cached_audio_path = os.path.join(tempfile.gettempdir(), f"cached_response_{response_hash}.wav")
if os.path.exists(cached_audio_path):
print("Using cached audio response")
tts_audio_path = cached_audio_path
else:
# Prepare TTS output path
tts_audio_path = audio_path.replace(".wav", "_reply.wav")
try:
# Synthesize speech with optimized settings
tts.tts_to_file(
text=final_response,
file_path=tts_audio_path,
speed=1.1 # Slightly faster speech for quicker responses
)
if not os.path.exists(tts_audio_path) or os.path.getsize(tts_audio_path) == 0:
raise Exception("TTS failed to generate audio file")
# Cache this response for future use
if len(final_response) < 100: # Only cache short responses
try:
import shutil
shutil.copy(tts_audio_path, cached_audio_path)
except Exception as cache_error:
print(f"Error caching audio: {str(cache_error)}")
except Exception as e:
print(f"TTS error: {str(e)}")
tts_audio_path = audio_path
final_response = "Sorry, I couldn't generate audio right now."
except Exception as e:
print(f"Transcription error: {str(e)}")
final_response = "I had trouble understanding that. Could you try again?"
tts_audio_path = audio_path
# Return both the audio file and the text response
try:
response = send_file(tts_audio_path, mimetype="audio/wav")
# Base64 encode the response text
encoded_response = base64.b64encode(final_response.encode('utf-8')).decode('ascii')
response.headers["X-Response-Text-Base64"] = encoded_response
response.headers["Access-Control-Expose-Headers"] = "X-Response-Text-Base64"
# Log total processing time
print(f"Total processing time: {time.time() - start_time:.2f}s")
memory_after = process.memory_info().rss / 1024 / 1024
print(f"Memory after processing: {memory_after:.2f} MB")
# Force garbage collection
gc.collect()
return response
except Exception as e:
print(f"Error sending file: {str(e)}")
return jsonify({
"error": "Could not send audio response",
"text_response": final_response
}), 500
except Exception as e:
print(f"Error in talk endpoint: {str(e)}")
return jsonify({"error": str(e)}), 500
finally:
# Clean up temporary files
try:
if 'audio_path' in locals() and os.path.exists(audio_path):
os.unlink(audio_path)
if 'tts_audio_path' in locals() and tts_audio_path != cached_audio_path and tts_audio_path != audio_path and os.path.exists(tts_audio_path):
os.unlink(tts_audio_path)
except Exception as cleanup_error:
print(f"Error cleaning up files: {str(cleanup_error)}")
# Final garbage collection
gc.collect()
@app.route("/chat", methods=["POST"])
def chat():
data = request.get_json()
if not data or "text" not in data:
return jsonify({"error": "Missing 'text' in request body"}), 400
# Ensure models are loaded
load_models()
try:
user_input = data["text"]
print(f"Text input: {user_input}") # Debugging
# Use the cached response generator
final_response = generate_ai_response(user_input)
print(f"Text response: {final_response}") # Debugging
return jsonify({"response": final_response})
except Exception as e:
print(f"Error in chat endpoint: {str(e)}")
return jsonify({"response": "I'm having trouble processing that. Could you try again?", "error": str(e)})
@app.route("/")
def index():
return "Metaverse AI Character API running."
# Cache for frequently used TTS responses
tts_audio_cache = {}
# Pre-cache common responses
def precache_common_responses():
"""Pre-generate audio for common responses to save processing time"""
common_responses = [
"I didn't catch that. Could you please speak again?",
"I'm listening. Please say more.",
"I heard you, but I'm having trouble forming a response right now.",
"I'm not sure what to say about that.",
"Let me think about that for a moment."
]
global tts
if tts is None:
load_models()
print("Pre-caching common audio responses...")
for response in common_responses:
try:
response_hash = str(hash(response))
cached_path = os.path.join(tempfile.gettempdir(), f"cached_response_{response_hash}.wav")
if not os.path.exists(cached_path):
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
tmp_path = tmp.name
tts.tts_to_file(text=response, file_path=tmp_path)
os.rename(tmp_path, cached_path)
tts_audio_cache[response] = cached_path
print(f"Cached: {response}")
except Exception as e:
print(f"Failed to cache response '{response}': {str(e)}")
print("Finished pre-caching")
# Health check endpoint to verify API is running properly
@app.route("/health", methods=["GET"])
def health_check():
"""Health check endpoint to verify API is running"""
memory_usage = psutil.Process(os.getpid()).memory_info().rss / 1024 / 1024
return jsonify({
"status": "ok",
"models_loaded": models_loaded,
"memory_usage_mb": round(memory_usage, 2),
"cache_size": len(response_cache),
"uptime_seconds": time.time() - startup_time
})
# Track startup time
startup_time = time.time()
if __name__ == "__main__":
print("Starting Metaverse AI Character API (Optimized for real-time on 2vCPU)...")
# Start loading models in a background thread
model_thread = threading.Thread(target=load_models)
model_thread.daemon = True # Allow the thread to be terminated when the main program exits
model_thread.start()
# Start pre-caching in another thread
cache_thread = threading.Thread(target=precache_common_responses)
cache_thread.daemon = True
cache_thread.start()
# Optimize Flask for low-resource environment
# Use threaded=True with lower thread count to prevent CPU overload
app.run(
host="0.0.0.0",
port=7860,
threaded=True,
# Options below reduce resource usage
debug=False, # Disable debug mode for production
use_reloader=False # Disable reloader to prevent duplicate processes
)