File size: 18,125 Bytes
7b16fc7 0426b81 0b6f989 0426b81 d97558b 0426b81 0b6f989 7b16fc7 0b6f989 0426b81 b3b50b5 0426b81 c310c35 0426b81 b3b50b5 0426b81 d97558b 0426b81 6f2d6ab 0426b81 a77cb2e 0426b81 a77cb2e 0426b81 6f2d6ab 0426b81 6f2d6ab 0426b81 16f7cd9 7b16fc7 0b6f989 0426b81 7b16fc7 a77cb2e 0426b81 d1d82fe b3b50b5 d97558b 0426b81 d97558b 0426b81 d97558b 6f2d6ab d97558b 0426b81 d97558b 0426b81 d97558b 6f2d6ab d97558b 0426b81 d97558b 0426b81 d97558b 0426b81 8b925bd 0426b81 a77cb2e 0426b81 d97558b 0426b81 d97558b 0017945 0426b81 596a84e 7b16fc7 0426b81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
from flask import Flask, request, jsonify, send_file
from flask_cors import CORS
from faster_whisper import WhisperModel
from transformers import pipeline
from TTS.api import TTS
import tempfile
import os
import re
import base64
import threading
import functools
import time
from cachetools import LRUCache, cached, TTLCache
import gc
import psutil
app = Flask(__name__)
CORS(app)
# Global configuration for low CPU environment
MODEL_CACHE_SIZE = 200 # Increased cache size to reduce recomputation
MODEL_CACHE_TTL = 7200 # Increased cache TTL to 2 hours
USE_GPU = False # No GPU available
# Load models lazily
whisper_model = None
llm = None
tts = None
models_loaded = False
models_lock = threading.Lock()
# Initialize caches
response_cache = TTLCache(maxsize=MODEL_CACHE_SIZE, ttl=MODEL_CACHE_TTL)
def load_models():
"""Load models optimized for low CPU environments"""
global whisper_model, llm, tts, models_loaded
if models_loaded:
return
with models_lock:
if models_loaded: # Double-check to avoid race condition
return
print("Loading models for low-resource environment...")
start_time = time.time()
# Force garbage collection before loading models
gc.collect()
# Choose smallest/fastest model options and optimize for CPU
device = "cpu" # Force CPU for limited resources
compute_type = "int8" # Use int8 quantization for faster inference
# Monitor memory usage
def log_memory():
process = psutil.Process(os.getpid())
memory_info = process.memory_info()
memory_mb = memory_info.rss / 1024 / 1024
print(f"Memory usage: {memory_mb:.2f} MB")
# Load whisper model first (most critical for voice input)
print("Loading whisper model...")
log_memory()
whisper_model = WhisperModel("tiny", device=device, compute_type=compute_type)
# Load LLM next
print("Loading language model...")
log_memory()
llm = pipeline(
"text-generation",
model="tiiuae/falcon-rw-1b", # Consider switching to a smaller model if available
max_new_tokens=30, # Reduced token count for faster generation
device=-1, # Force CPU
)
# Finally load TTS
print("Loading TTS model...")
log_memory()
tts = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC",
progress_bar=False,
gpu=False)
# Force garbage collection again after loading
gc.collect()
models_loaded = True
log_memory()
print(f"Models loaded in {time.time() - start_time:.2f} seconds")
@cached(cache=response_cache)
def generate_ai_response(user_input):
"""
Generate AI responses with caching to avoid repetitive processing.
Optimized for low CPU environments.
"""
load_models() # Ensure models are loaded
# Handle empty or too short input
if not user_input or len(user_input.strip()) < 2:
return "I'm listening. Please say more."
# Normalize and simplify input to improve cache hits
normalized_input = user_input.lower().strip()
# Check for very similar recent inputs to maximize cache usage
for cached_input in response_cache.keys():
if cached_input and normalized_input and (
cached_input.lower() in normalized_input or
normalized_input in cached_input.lower() or
levenshtein_distance(normalized_input, cached_input.lower()) < 5):
print(f"Using cached similar response for: {cached_input}")
return response_cache[cached_input]
try:
# Start with a small timeout for real-time experience
start_time = time.time()
timeout = 3.0 # 3 seconds max for real-time response
# Generate response with monitoring
raw_response = llm(user_input, max_new_tokens=30)[0]["generated_text"]
# Check if we're taking too long
elapsed = time.time() - start_time
if elapsed > timeout:
print(f"Response generation taking too long: {elapsed:.2f}s")
return "Let me think about that for a moment."
# Process to get clean, short response
final_response = process_response(user_input, raw_response)
# Force garbage collection after processing to keep memory usage low
gc.collect()
return final_response
except Exception as e:
print(f"Error generating AI response: {str(e)}")
# Return a default response if anything goes wrong
return "I heard you, but I'm having trouble forming a response right now."
def levenshtein_distance(s1, s2):
"""
Calculate simple string similarity for cache optimization.
A simpler implementation than full Levenshtein to save CPU cycles.
"""
if len(s1) < len(s2):
return levenshtein_distance(s2, s1)
if not s2:
return len(s1)
previous_row = range(len(s2) + 1)
for i, c1 in enumerate(s1):
current_row = [i + 1]
for j, c2 in enumerate(s2):
insertions = previous_row[j + 1] + 1
deletions = current_row[j] + 1
substitutions = previous_row[j] + (c1 != c2)
current_row.append(min(insertions, deletions, substitutions))
previous_row = current_row
return previous_row[-1]
def process_response(input_text, generated_text):
"""Optimized response processing function"""
# Handle the case where generated_text might be None
if not generated_text:
return "I'm not sure what to say about that."
# Make sure both are strings
input_text = str(input_text).strip()
generated_text = str(generated_text).strip()
# Skip empty input
if not input_text:
clean_response = generated_text
# Remove the input text from the beginning of the response
elif generated_text.startswith(input_text):
clean_response = generated_text[len(input_text):].strip()
else:
clean_response = generated_text.strip()
# If we ended up with nothing, provide a default response
if not clean_response:
return "I'm listening."
# Split into sentences more efficiently
sentences = re.split(r'(?<=[.!?])\s+', clean_response)
# Filter out empty or very short sentences
meaningful_sentences = [s for s in sentences if len(s) > 5]
# Take just 1-2 sentences for a casual, human-like response
if meaningful_sentences:
if len(meaningful_sentences) > 2:
result = " ".join(meaningful_sentences[:2])
else:
result = " ".join(meaningful_sentences)
else:
# If no meaningful sentences, but we have short sentences, use those
short_sentences = [s for s in sentences if s.strip()]
if short_sentences:
result = " ".join(short_sentences[:2])
else:
# Fallback if no good sentences were found
result = "I'm not sure what to say about that."
# Remove any repetitive phrases
result = remove_repetitions(result)
# Normalize quotes to ASCII equivalents
result = normalize_quotes(result)
return result
def normalize_quotes(text):
"""Replace curly quotes with straight quotes - optimized version"""
replacements = {
'"': '"', '"': '"',
''': "'", ''': "'"
}
for old, new in replacements.items():
text = text.replace(old, new)
return text
def remove_repetitions(text):
"""Optimized repetition removal function"""
words = text.split()
if len(words) <= 5: # Don't process very short responses
return text
result = []
text_so_far = ""
for i in range(len(words)):
# Check if this word starts a repeated phrase
if i < len(words) - 3: # Need at least 3 words to check for repetition
# Check if next 3+ words appear earlier in the text
is_repetition = False
for j in range(3, min(10, len(words) - i)): # Check phrases of length 3 to 10
phrase = " ".join(words[i:i+j])
if phrase in text_so_far:
is_repetition = True
break
if not is_repetition:
result.append(words[i])
text_so_far += words[i] + " "
else:
result.append(words[i])
text_so_far += words[i] + " "
return " ".join(result)
@app.route("/talk", methods=["POST"])
def talk():
"""Optimized voice API endpoint for low-resource environments"""
if "audio" not in request.files:
return jsonify({"error": "No audio file"}), 400
# Get current memory usage
process = psutil.Process(os.getpid())
memory_before = process.memory_info().rss / 1024 / 1024
print(f"Memory before processing: {memory_before:.2f} MB")
# Ensure models are loaded
load_models()
# Start timing for end-to-end processing
start_time = time.time()
# Save audio
audio_file = request.files["audio"]
try:
# Use in-memory processing when possible to avoid disk I/O
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
audio_path = tmp.name
audio_file.save(audio_path)
# Transcribe with optimized settings
try:
# Set beam_size=1 for faster transcription with slight accuracy trade-off
segments, _ = whisper_model.transcribe(
audio_path,
beam_size=1,
vad_filter=True, # Filter out non-speech
language="en" # Specify language if known
)
transcription = "".join([seg.text for seg in segments])
print(f"Transcription: {transcription}")
print(f"Transcription time: {time.time() - start_time:.2f}s")
if not transcription.strip():
final_response = "I didn't catch that. Could you please speak again?"
else:
# Use the cached response generator
final_response = generate_ai_response(transcription)
print(f"Voice response: {final_response}")
print(f"Response generation time: {time.time() - start_time:.2f}s")
# Cache frequently used responses as pre-synthesized audio files
response_hash = str(hash(final_response))
cached_audio_path = os.path.join(tempfile.gettempdir(), f"cached_response_{response_hash}.wav")
if os.path.exists(cached_audio_path):
print("Using cached audio response")
tts_audio_path = cached_audio_path
else:
# Prepare TTS output path
tts_audio_path = audio_path.replace(".wav", "_reply.wav")
try:
# Synthesize speech with optimized settings
tts.tts_to_file(
text=final_response,
file_path=tts_audio_path,
speed=1.1 # Slightly faster speech for quicker responses
)
if not os.path.exists(tts_audio_path) or os.path.getsize(tts_audio_path) == 0:
raise Exception("TTS failed to generate audio file")
# Cache this response for future use
if len(final_response) < 100: # Only cache short responses
try:
import shutil
shutil.copy(tts_audio_path, cached_audio_path)
except Exception as cache_error:
print(f"Error caching audio: {str(cache_error)}")
except Exception as e:
print(f"TTS error: {str(e)}")
tts_audio_path = audio_path
final_response = "Sorry, I couldn't generate audio right now."
except Exception as e:
print(f"Transcription error: {str(e)}")
final_response = "I had trouble understanding that. Could you try again?"
tts_audio_path = audio_path
# Return both the audio file and the text response
try:
response = send_file(tts_audio_path, mimetype="audio/wav")
# Base64 encode the response text
encoded_response = base64.b64encode(final_response.encode('utf-8')).decode('ascii')
response.headers["X-Response-Text-Base64"] = encoded_response
response.headers["Access-Control-Expose-Headers"] = "X-Response-Text-Base64"
# Log total processing time
print(f"Total processing time: {time.time() - start_time:.2f}s")
memory_after = process.memory_info().rss / 1024 / 1024
print(f"Memory after processing: {memory_after:.2f} MB")
# Force garbage collection
gc.collect()
return response
except Exception as e:
print(f"Error sending file: {str(e)}")
return jsonify({
"error": "Could not send audio response",
"text_response": final_response
}), 500
except Exception as e:
print(f"Error in talk endpoint: {str(e)}")
return jsonify({"error": str(e)}), 500
finally:
# Clean up temporary files
try:
if 'audio_path' in locals() and os.path.exists(audio_path):
os.unlink(audio_path)
if 'tts_audio_path' in locals() and tts_audio_path != cached_audio_path and tts_audio_path != audio_path and os.path.exists(tts_audio_path):
os.unlink(tts_audio_path)
except Exception as cleanup_error:
print(f"Error cleaning up files: {str(cleanup_error)}")
# Final garbage collection
gc.collect()
@app.route("/chat", methods=["POST"])
def chat():
data = request.get_json()
if not data or "text" not in data:
return jsonify({"error": "Missing 'text' in request body"}), 400
# Ensure models are loaded
load_models()
try:
user_input = data["text"]
print(f"Text input: {user_input}") # Debugging
# Use the cached response generator
final_response = generate_ai_response(user_input)
print(f"Text response: {final_response}") # Debugging
return jsonify({"response": final_response})
except Exception as e:
print(f"Error in chat endpoint: {str(e)}")
return jsonify({"response": "I'm having trouble processing that. Could you try again?", "error": str(e)})
@app.route("/")
def index():
return "Metaverse AI Character API running."
# Cache for frequently used TTS responses
tts_audio_cache = {}
# Pre-cache common responses
def precache_common_responses():
"""Pre-generate audio for common responses to save processing time"""
common_responses = [
"I didn't catch that. Could you please speak again?",
"I'm listening. Please say more.",
"I heard you, but I'm having trouble forming a response right now.",
"I'm not sure what to say about that.",
"Let me think about that for a moment."
]
global tts
if tts is None:
load_models()
print("Pre-caching common audio responses...")
for response in common_responses:
try:
response_hash = str(hash(response))
cached_path = os.path.join(tempfile.gettempdir(), f"cached_response_{response_hash}.wav")
if not os.path.exists(cached_path):
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
tmp_path = tmp.name
tts.tts_to_file(text=response, file_path=tmp_path)
os.rename(tmp_path, cached_path)
tts_audio_cache[response] = cached_path
print(f"Cached: {response}")
except Exception as e:
print(f"Failed to cache response '{response}': {str(e)}")
print("Finished pre-caching")
# Health check endpoint to verify API is running properly
@app.route("/health", methods=["GET"])
def health_check():
"""Health check endpoint to verify API is running"""
memory_usage = psutil.Process(os.getpid()).memory_info().rss / 1024 / 1024
return jsonify({
"status": "ok",
"models_loaded": models_loaded,
"memory_usage_mb": round(memory_usage, 2),
"cache_size": len(response_cache),
"uptime_seconds": time.time() - startup_time
})
# Track startup time
startup_time = time.time()
if __name__ == "__main__":
print("Starting Metaverse AI Character API (Optimized for real-time on 2vCPU)...")
# Start loading models in a background thread
model_thread = threading.Thread(target=load_models)
model_thread.daemon = True # Allow the thread to be terminated when the main program exits
model_thread.start()
# Start pre-caching in another thread
cache_thread = threading.Thread(target=precache_common_responses)
cache_thread.daemon = True
cache_thread.start()
# Optimize Flask for low-resource environment
# Use threaded=True with lower thread count to prevent CPU overload
app.run(
host="0.0.0.0",
port=7860,
threaded=True,
# Options below reduce resource usage
debug=False, # Disable debug mode for production
use_reloader=False # Disable reloader to prevent duplicate processes
) |