maahi2412's picture
Update app.py
eb27057 verified
from flask import Flask, request, jsonify
import os
import pdfplumber
import pytesseract
from PIL import Image
from transformers import PegasusForConditionalGeneration, PegasusTokenizer
import torch
import logging
app = Flask(__name__)
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load Pegasus Model (load once globally)
logger.info("Loading Pegasus model and tokenizer...")
tokenizer = PegasusTokenizer.from_pretrained("google/pegasus-xsum")
model = PegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum").to("cpu") # Force CPU to manage memory
logger.info("Model loaded successfully.")
# Extract text from PDF with page limit
def extract_text_from_pdf(file_path, max_pages=5):
text = ""
try:
with pdfplumber.open(file_path) as pdf:
total_pages = len(pdf.pages)
pages_to_process = min(total_pages, max_pages)
logger.info(f"Extracting text from {pages_to_process} of {total_pages} pages in {file_path}")
for i, page in enumerate(pdf.pages[:pages_to_process]):
try:
extracted = page.extract_text()
if extracted:
text += extracted + "\n"
else:
logger.info(f"No text on page {i+1}, attempting OCR...")
image = page.to_image().original
text += pytesseract.image_to_string(image) + "\n"
except Exception as e:
logger.warning(f"Error processing page {i+1}: {e}")
continue
except Exception as e:
logger.error(f"Failed to process PDF {file_path}: {e}")
return ""
return text.strip()
# Extract text from image (OCR)
def extract_text_from_image(file_path):
try:
logger.info(f"Extracting text from image {file_path} using OCR...")
image = Image.open(file_path)
text = pytesseract.image_to_string(image)
return text.strip()
except Exception as e:
logger.error(f"Failed to process image {file_path}: {e}")
return ""
# Summarize text with chunking for large inputs
def summarize_text(text, max_input_length=512, max_output_length=150):
try:
logger.info("Summarizing text...")
# Tokenize and truncate to max_input_length
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=max_input_length, padding=True)
input_length = inputs["input_ids"].shape[1]
logger.info(f"Input length: {input_length} tokens")
# Adjust generation params for efficiency
summary_ids = model.generate(
inputs["input_ids"],
max_length=max_output_length,
min_length=30,
num_beams=2, # Reduce beams for speedup
early_stopping=True,
length_penalty=1.0, # Encourage shorter outputs
)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
logger.info("Summarization completed.")
return summary
except Exception as e:
logger.error(f"Error during summarization: {e}")
return ""
@app.route('/summarize', methods=['POST'])
def summarize_document():
if 'file' not in request.files:
logger.error("No file uploaded in request.")
return jsonify({"error": "No file uploaded"}), 400
file = request.files['file']
filename = file.filename
if not filename:
logger.error("Empty filename in request.")
return jsonify({"error": "No file uploaded"}), 400
file_path = os.path.join("/tmp", filename)
try:
file.save(file_path)
logger.info(f"File saved to {file_path}")
if filename.lower().endswith('.pdf'):
text = extract_text_from_pdf(file_path, max_pages=2) # Reduce to 2 pages
elif filename.lower().endswith(('.png', '.jpeg', '.jpg')):
text = extract_text_from_image(file_path)
else:
logger.error(f"Unsupported file format: {filename}")
return jsonify({"error": "Unsupported file format. Use PDF, PNG, JPEG, or JPG"}), 400
if not text:
logger.warning(f"No text extracted from {filename}")
return jsonify({"error": "No text extracted from the file"}), 400
summary = summarize_text(text)
if not summary:
logger.warning("Summarization failed to produce output.")
return jsonify({"error": "Failed to generate summary"}), 500
logger.info(f"Summary generated for {filename}")
return jsonify({"summary": summary})
except Exception as e:
logger.error(f"Unexpected error processing {filename}: {e}")
return jsonify({"error": str(e)}), 500
finally:
if os.path.exists(file_path):
try:
os.remove(file_path)
logger.info(f"Cleaned up file: {file_path}")
except Exception as e:
logger.warning(f"Failed to delete {file_path}: {e}")
if __name__ == '__main__':
logger.info("Starting Flask app...")
app.run(host='0.0.0.0', port=7860)
# ---------------------------------
# import os
# import pdfplumber
# from PIL import Image
# import pytesseract
# import transformers
# from transformers import logging
# logging.set_verbosity_error()
# import numpy as np
# from flask import Flask, request, jsonify
# from flask_cors import CORS
# from transformers import PegasusForConditionalGeneration, PegasusTokenizer, BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments
# from datasets import load_dataset, concatenate_datasets
# import torch
# from sklearn.feature_extraction.text import TfidfVectorizer
# from sklearn.metrics.pairwise import cosine_similarity
# app = Flask(__name__)
# CORS(app)
# UPLOAD_FOLDER = 'uploads'
# PEGASUS_MODEL_DIR = 'fine_tuned_pegasus'
# BERT_MODEL_DIR = 'fine_tuned_bert'
# LEGALBERT_MODEL_DIR = 'fine_tuned_legalbert'
# MAX_FILE_SIZE = 100 * 1024 * 1024
# os.makedirs(UPLOAD_FOLDER, exist_ok=True)
# transformers.logging.set_verbosity_error()
# os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
# # Pegasus Fine-Tuning
# def load_or_finetune_pegasus():
# if os.path.exists(PEGASUS_MODEL_DIR):
# print("Loading fine-tuned Pegasus model...")
# tokenizer = PegasusTokenizer.from_pretrained(PEGASUS_MODEL_DIR)
# model = PegasusForConditionalGeneration.from_pretrained(PEGASUS_MODEL_DIR)
# else:
# print("Fine-tuning Pegasus on CNN/Daily Mail and XSUM...")
# tokenizer = PegasusTokenizer.from_pretrained("google/pegasus-xsum")
# model = PegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum")
# # Load and combine datasets
# cnn_dm = load_dataset("cnn_dailymail", "3.0.0", split="train[:5000]") # 5K samples
# xsum = load_dataset("xsum", split="train[:5000]") # 5K samples
# combined_dataset = concatenate_datasets([cnn_dm, xsum])
# def preprocess_function(examples):
# inputs = tokenizer(examples["article"] if "article" in examples else examples["document"],
# max_length=512, truncation=True, padding="max_length")
# targets = tokenizer(examples["highlights"] if "highlights" in examples else examples["summary"],
# max_length=400, truncation=True, padding="max_length")
# inputs["labels"] = targets["input_ids"]
# return inputs
# tokenized_dataset = combined_dataset.map(preprocess_function, batched=True)
# train_dataset = tokenized_dataset.select(range(8000)) # 80%
# eval_dataset = tokenized_dataset.select(range(8000, 10000)) # 20%
# training_args = TrainingArguments(
# output_dir="./pegasus_finetune",
# num_train_epochs=3, # Increased for better fine-tuning
# per_device_train_batch_size=1,
# per_device_eval_batch_size=1,
# warmup_steps=500,
# weight_decay=0.01,
# logging_dir="./logs",
# logging_steps=10,
# eval_strategy="epoch",
# save_strategy="epoch",
# load_best_model_at_end=True,
# )
# trainer = Trainer(
# model=model,
# args=training_args,
# train_dataset=train_dataset,
# eval_dataset=eval_dataset,
# )
# trainer.train()
# trainer.save_model(PEGASUS_MODEL_DIR)
# tokenizer.save_pretrained(PEGASUS_MODEL_DIR)
# print(f"Fine-tuned Pegasus saved to {PEGASUS_MODEL_DIR}")
# return tokenizer, model
# # BERT Fine-Tuning
# def load_or_finetune_bert():
# if os.path.exists(BERT_MODEL_DIR):
# print("Loading fine-tuned BERT model...")
# tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_DIR)
# model = BertForSequenceClassification.from_pretrained(BERT_MODEL_DIR, num_labels=2)
# else:
# print("Fine-tuning BERT on CNN/Daily Mail for extractive summarization...")
# tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
# model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)
# # Load dataset and preprocess for sentence classification
# cnn_dm = load_dataset("cnn_dailymail", "3.0.0", split="train[:5000]")
# def preprocess_for_extractive(examples):
# sentences = []
# labels = []
# for article, highlights in zip(examples["article"], examples["highlights"]):
# article_sents = article.split(". ")
# highlight_sents = highlights.split(". ")
# for sent in article_sents:
# if sent.strip():
# # Label as 1 if sentence is similar to any highlight, else 0
# is_summary = any(sent.strip() in h for h in highlight_sents)
# sentences.append(sent)
# labels.append(1 if is_summary else 0)
# return {"sentence": sentences, "label": labels}
# dataset = cnn_dm.map(preprocess_for_extractive, batched=True, remove_columns=["article", "highlights", "id"])
# tokenized_dataset = dataset.map(
# lambda x: tokenizer(x["sentence"], max_length=512, truncation=True, padding="max_length"),
# batched=True
# )
# tokenized_dataset = tokenized_dataset.remove_columns(["sentence"])
# train_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset))))
# eval_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset)), len(tokenized_dataset)))
# training_args = TrainingArguments(
# output_dir="./bert_finetune",
# num_train_epochs=3,
# per_device_train_batch_size=8,
# per_device_eval_batch_size=8,
# warmup_steps=500,
# weight_decay=0.01,
# logging_dir="./logs",
# logging_steps=10,
# eval_strategy="epoch",
# save_strategy="epoch",
# load_best_model_at_end=True,
# )
# trainer = Trainer(
# model=model,
# args=training_args,
# train_dataset=train_dataset,
# eval_dataset=eval_dataset,
# )
# trainer.train()
# trainer.save_model(BERT_MODEL_DIR)
# tokenizer.save_pretrained(BERT_MODEL_DIR)
# print(f"Fine-tuned BERT saved to {BERT_MODEL_DIR}")
# return tokenizer, model
# # LegalBERT Fine-Tuning
# def load_or_finetune_legalbert():
# if os.path.exists(LEGALBERT_MODEL_DIR):
# print("Loading fine-tuned LegalBERT model...")
# tokenizer = BertTokenizer.from_pretrained(LEGALBERT_MODEL_DIR)
# model = BertForSequenceClassification.from_pretrained(LEGALBERT_MODEL_DIR, num_labels=2)
# else:
# print("Fine-tuning LegalBERT on Billsum for extractive summarization...")
# tokenizer = BertTokenizer.from_pretrained("nlpaueb/legal-bert-base-uncased")
# model = BertForSequenceClassification.from_pretrained("nlpaueb/legal-bert-base-uncased", num_labels=2)
# # Load dataset
# billsum = load_dataset("billsum", split="train[:5000]")
# def preprocess_for_extractive(examples):
# sentences = []
# labels = []
# for text, summary in zip(examples["text"], examples["summary"]):
# text_sents = text.split(". ")
# summary_sents = summary.split(". ")
# for sent in text_sents:
# if sent.strip():
# is_summary = any(sent.strip() in s for s in summary_sents)
# sentences.append(sent)
# labels.append(1 if is_summary else 0)
# return {"sentence": sentences, "label": labels}
# dataset = billsum.map(preprocess_for_extractive, batched=True, remove_columns=["text", "summary", "title"])
# tokenized_dataset = dataset.map(
# lambda x: tokenizer(x["sentence"], max_length=512, truncation=True, padding="max_length"),
# batched=True
# )
# tokenized_dataset = tokenized_dataset.remove_columns(["sentence"])
# train_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset))))
# eval_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset)), len(tokenized_dataset)))
# training_args = TrainingArguments(
# output_dir="./legalbert_finetune",
# num_train_epochs=3,
# per_device_train_batch_size=8,
# per_device_eval_batch_size=8,
# warmup_steps=500,
# weight_decay=0.01,
# logging_dir="./logs",
# logging_steps=10,
# eval_strategy="epoch",
# save_strategy="epoch",
# load_best_model_at_end=True,
# )
# trainer = Trainer(
# model=model,
# args=training_args,
# train_dataset=train_dataset,
# eval_dataset=eval_dataset,
# )
# trainer.train()
# trainer.save_model(LEGALBERT_MODEL_DIR)
# tokenizer.save_pretrained(LEGALBERT_MODEL_DIR)
# print(f"Fine-tuned LegalBERT saved to {LEGALBERT_MODEL_DIR}")
# return tokenizer, model
# # Load models
# # pegasus_tokenizer, pegasus_model = load_or_finetune_pegasus()
# # bert_tokenizer, bert_model = load_or_finetune_bert()
# # legalbert_tokenizer, legalbert_model = load_or_finetune_legalbert()
# def extract_text_from_pdf(file_path):
# text = ""
# with pdfplumber.open(file_path) as pdf:
# for page in pdf.pages:
# text += page.extract_text() or ""
# return text
# def extract_text_from_image(file_path):
# image = Image.open(file_path)
# text = pytesseract.image_to_string(image)
# return text
# def choose_model(text):
# legal_keywords = ["court", "legal", "law", "judgment", "contract", "statute", "case"]
# tfidf = TfidfVectorizer(vocabulary=legal_keywords)
# tfidf_matrix = tfidf.fit_transform([text.lower()])
# score = np.sum(tfidf_matrix.toarray())
# if score > 0.1:
# return "legalbert"
# elif len(text.split()) > 50:
# return "pegasus"
# else:
# return "bert"
# def summarize_with_pegasus(text):
# inputs = pegasus_tokenizer(text, truncation=True, padding="longest", return_tensors="pt", max_length=512)
# summary_ids = pegasus_model.generate(
# inputs["input_ids"],
# max_length=400, min_length=80, length_penalty=1.5, num_beams=4
# )
# return pegasus_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
# def summarize_with_bert(text):
# sentences = text.split(". ")
# if len(sentences) < 6: # Ensure enough for 5 sentences
# return text
# inputs = bert_tokenizer(sentences, return_tensors="pt", padding=True, truncation=True, max_length=512)
# with torch.no_grad():
# outputs = bert_model(**inputs)
# logits = outputs.logits
# probs = torch.softmax(logits, dim=1)[:, 1] # Probability of being a summary sentence
# key_sentence_idx = probs.argsort(descending=True)[:5] # Top 5 sentences
# return ". ".join([sentences[idx] for idx in key_sentence_idx if sentences[idx].strip()])
# def summarize_with_legalbert(text):
# sentences = text.split(". ")
# if len(sentences) < 6:
# return text
# inputs = legalbert_tokenizer(sentences, return_tensors="pt", padding=True, truncation=True, max_length=512)
# with torch.no_grad():
# outputs = legalbert_model(**inputs)
# logits = outputs.logits
# probs = torch.softmax(logits, dim=1)[:, 1]
# key_sentence_idx = probs.argsort(descending=True)[:5]
# return ". ".join([sentences[idx] for idx in key_sentence_idx if sentences[idx].strip()])
# # Load Models
# pegasus_tokenizer, pegasus_model = load_or_finetune_pegasus()
# bert_tokenizer, bert_model = load_or_finetune_bert()
# legalbert_tokenizer, legalbert_model = load_or_finetune_legalbert()
# @app.route('/summarize', methods=['POST'])
# def summarize_document():
# if 'file' not in request.files:
# return jsonify({"error": "No file uploaded"}), 400
# file = request.files['file']
# filename = file.filename
# file.seek(0, os.SEEK_END)
# file_size = file.tell()
# if file_size > MAX_FILE_SIZE:
# return jsonify({"error": f"File size exceeds {MAX_FILE_SIZE // (1024 * 1024)} MB"}), 413
# file.seek(0)
# file_path = os.path.join(UPLOAD_FOLDER, filename)
# try:
# file.save(file_path)
# except Exception as e:
# return jsonify({"error": f"Failed to save file: {str(e)}"}), 500
# try:
# if filename.endswith('.pdf'):
# text = extract_text_from_pdf(file_path)
# elif filename.endswith(('.png', '.jpeg', '.jpg')):
# text = extract_text_from_image(file_path)
# else:
# os.remove(file_path)
# return jsonify({"error": "Unsupported file format."}), 400
# except Exception as e:
# os.remove(file_path)
# return jsonify({"error": f"Text extraction failed: {str(e)}"}), 500
# if not text.strip():
# os.remove(file_path)
# return jsonify({"error": "No text extracted"}), 400
# try:
# model = choose_model(text)
# if model == "pegasus":
# summary = summarize_with_pegasus(text)
# elif model == "bert":
# summary = summarize_with_bert(text)
# elif model == "legalbert":
# summary = summarize_with_legalbert(text)
# except Exception as e:
# os.remove(file_path)
# return jsonify({"error": f"Summarization failed: {str(e)}"}), 500
# os.remove(file_path)
# return jsonify({"model_used": model, "summary": summary})
# if __name__ == '__main__':
# port = int(os.environ.get("PORT", 5000))
# app.run(debug=False, host='0.0.0.0', port=port)