File size: 19,403 Bytes
eb27057
 
 
 
 
 
 
 
a8d28cf
eb27057
a8d28cf
eb27057
 
 
a8d28cf
eb27057
 
 
 
 
a8d28cf
eb27057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8d28cf
eb27057
 
 
 
 
 
 
 
 
 
a8d28cf
eb27057
 
 
 
 
 
 
 
a8d28cf
eb27057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8d28cf
eb27057
 
 
 
 
a8d28cf
eb27057
 
 
 
 
a8d28cf
eb27057
 
 
 
a8d28cf
eb27057
 
 
 
 
 
 
a8d28cf
eb27057
 
 
a8d28cf
eb27057
 
 
 
a8d28cf
eb27057
 
a8d28cf
eb27057
 
 
a8d28cf
eb27057
 
 
 
 
 
 
a8d28cf
eb27057
 
 
a8d28cf
eb27057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1a141
eb27057
 
 
 
 
 
 
 
4a1a141
eb27057
 
bf65784
eb27057
 
 
 
 
 
 
 
 
 
a8d28cf
eb27057
 
 
 
a8d28cf
eb27057
 
 
 
 
 
 
a8d28cf
eb27057
 
 
a8d28cf
eb27057
 
 
 
 
 
 
 
 
 
 
 
 
a8d28cf
eb27057
 
 
 
 
 
a8d28cf
eb27057
 
 
 
a8d28cf
eb27057
4a1a141
eb27057
 
 
 
 
 
 
 
 
 
a8d28cf
eb27057
 
a8d28cf
eb27057
 
 
 
 
 
 
 
 
 
 
 
 
a8d28cf
eb27057
 
 
 
 
 
 
 
a8d28cf
eb27057
 
 
 
 
 
 
 
 
 
 
 
 
a8d28cf
eb27057
 
 
 
 
 
a8d28cf
eb27057
 
 
 
a8d28cf
eb27057
a8d28cf
eb27057
 
 
 
 
 
 
 
 
 
a8d28cf
eb27057
 
a8d28cf
eb27057
 
 
 
 
 
 
 
 
 
 
 
a8d28cf
eb27057
 
 
 
 
 
 
 
a8d28cf
eb27057
 
 
 
 
 
 
 
 
 
 
 
 
a8d28cf
eb27057
 
 
 
 
 
a8d28cf
eb27057
 
 
 
a8d28cf
eb27057
a8d28cf
eb27057
 
 
 
a8d28cf
eb27057
 
 
 
 
 
4a1a141
eb27057
 
 
 
4a1a141
eb27057
 
 
 
 
 
 
 
 
 
 
a8d28cf
eb27057
 
 
 
 
 
 
a8d28cf
eb27057
 
 
 
 
 
 
 
 
 
 
a8d28cf
eb27057
 
 
 
 
 
 
 
 
 
 
4a1a141
eb27057
 
 
 
dd36399
eb27057
 
 
 
4a1a141
eb27057
 
 
 
 
 
 
 
 
 
 
 
a8d28cf
eb27057
 
 
 
 
 
 
 
 
 
 
a8d28cf
eb27057
 
 
a8d28cf
eb27057
 
 
 
 
 
 
 
 
 
 
a8d28cf
eb27057
 
4a1a141
eb27057
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
from flask import Flask, request, jsonify
import os
import pdfplumber
import pytesseract
from PIL import Image
from transformers import PegasusForConditionalGeneration, PegasusTokenizer
import torch
import logging

app = Flask(__name__)

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Load Pegasus Model (load once globally)
logger.info("Loading Pegasus model and tokenizer...")
tokenizer = PegasusTokenizer.from_pretrained("google/pegasus-xsum")
model = PegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum").to("cpu")  # Force CPU to manage memory
logger.info("Model loaded successfully.")

# Extract text from PDF with page limit
def extract_text_from_pdf(file_path, max_pages=5):
    text = ""
    try:
        with pdfplumber.open(file_path) as pdf:
            total_pages = len(pdf.pages)
            pages_to_process = min(total_pages, max_pages)
            logger.info(f"Extracting text from {pages_to_process} of {total_pages} pages in {file_path}")
            for i, page in enumerate(pdf.pages[:pages_to_process]):
                try:
                    extracted = page.extract_text()
                    if extracted:
                        text += extracted + "\n"
                    else:
                        logger.info(f"No text on page {i+1}, attempting OCR...")
                        image = page.to_image().original
                        text += pytesseract.image_to_string(image) + "\n"
                except Exception as e:
                    logger.warning(f"Error processing page {i+1}: {e}")
                    continue
    except Exception as e:
        logger.error(f"Failed to process PDF {file_path}: {e}")
        return ""
    return text.strip()

# Extract text from image (OCR)
def extract_text_from_image(file_path):
    try:
        logger.info(f"Extracting text from image {file_path} using OCR...")
        image = Image.open(file_path)
        text = pytesseract.image_to_string(image)
        return text.strip()
    except Exception as e:
        logger.error(f"Failed to process image {file_path}: {e}")
        return ""

# Summarize text with chunking for large inputs
def summarize_text(text, max_input_length=512, max_output_length=150):
    try:
        logger.info("Summarizing text...")
        # Tokenize and truncate to max_input_length
        inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=max_input_length, padding=True)
        input_length = inputs["input_ids"].shape[1]
        logger.info(f"Input length: {input_length} tokens")
        
        # Adjust generation params for efficiency
        summary_ids = model.generate(
            inputs["input_ids"],
            max_length=max_output_length,
            min_length=30,
            num_beams=2,  # Reduce beams for speedup
            early_stopping=True,
            length_penalty=1.0,  # Encourage shorter outputs
        )
        summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
        logger.info("Summarization completed.")
        return summary
    except Exception as e:
        logger.error(f"Error during summarization: {e}")
        return ""

@app.route('/summarize', methods=['POST'])
def summarize_document():
    if 'file' not in request.files:
        logger.error("No file uploaded in request.")
        return jsonify({"error": "No file uploaded"}), 400
    
    file = request.files['file']
    filename = file.filename
    if not filename:
        logger.error("Empty filename in request.")
        return jsonify({"error": "No file uploaded"}), 400
    
    file_path = os.path.join("/tmp", filename)
    try:
        file.save(file_path)
        logger.info(f"File saved to {file_path}")
        
        if filename.lower().endswith('.pdf'):
            text = extract_text_from_pdf(file_path, max_pages=2)  # Reduce to 2 pages
        elif filename.lower().endswith(('.png', '.jpeg', '.jpg')):
            text = extract_text_from_image(file_path)
        else:
            logger.error(f"Unsupported file format: {filename}")
            return jsonify({"error": "Unsupported file format. Use PDF, PNG, JPEG, or JPG"}), 400
        
        if not text:
            logger.warning(f"No text extracted from {filename}")
            return jsonify({"error": "No text extracted from the file"}), 400
        
        summary = summarize_text(text)
        if not summary:
            logger.warning("Summarization failed to produce output.")
            return jsonify({"error": "Failed to generate summary"}), 500
        
        logger.info(f"Summary generated for {filename}")
        return jsonify({"summary": summary})
    
    except Exception as e:
        logger.error(f"Unexpected error processing {filename}: {e}")
        return jsonify({"error": str(e)}), 500
    
    finally:
        if os.path.exists(file_path):
            try:
                os.remove(file_path)
                logger.info(f"Cleaned up file: {file_path}")
            except Exception as e:
                logger.warning(f"Failed to delete {file_path}: {e}")

if __name__ == '__main__':
    logger.info("Starting Flask app...")
    app.run(host='0.0.0.0', port=7860)

# ---------------------------------
# import os
# import pdfplumber
# from PIL import Image
# import pytesseract
# import transformers
# from transformers import logging
# logging.set_verbosity_error()
# import numpy as np
# from flask import Flask, request, jsonify
# from flask_cors import CORS
# from transformers import PegasusForConditionalGeneration, PegasusTokenizer, BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments
# from datasets import load_dataset, concatenate_datasets
# import torch
# from sklearn.feature_extraction.text import TfidfVectorizer
# from sklearn.metrics.pairwise import cosine_similarity

# app = Flask(__name__)
# CORS(app)
# UPLOAD_FOLDER = 'uploads'
# PEGASUS_MODEL_DIR = 'fine_tuned_pegasus'
# BERT_MODEL_DIR = 'fine_tuned_bert'
# LEGALBERT_MODEL_DIR = 'fine_tuned_legalbert'
# MAX_FILE_SIZE = 100 * 1024 * 1024
# os.makedirs(UPLOAD_FOLDER, exist_ok=True)

# transformers.logging.set_verbosity_error()
# os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"

# # Pegasus Fine-Tuning
# def load_or_finetune_pegasus():
#     if os.path.exists(PEGASUS_MODEL_DIR):
#         print("Loading fine-tuned Pegasus model...")
#         tokenizer = PegasusTokenizer.from_pretrained(PEGASUS_MODEL_DIR)
#         model = PegasusForConditionalGeneration.from_pretrained(PEGASUS_MODEL_DIR)
#     else:
#         print("Fine-tuning Pegasus on CNN/Daily Mail and XSUM...")
#         tokenizer = PegasusTokenizer.from_pretrained("google/pegasus-xsum")
#         model = PegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum")
        
#         # Load and combine datasets
#         cnn_dm = load_dataset("cnn_dailymail", "3.0.0", split="train[:5000]")  # 5K samples
#         xsum = load_dataset("xsum", split="train[:5000]")  # 5K samples
#         combined_dataset = concatenate_datasets([cnn_dm, xsum])
        
#         def preprocess_function(examples):
#             inputs = tokenizer(examples["article"] if "article" in examples else examples["document"], 
#                               max_length=512, truncation=True, padding="max_length")
#             targets = tokenizer(examples["highlights"] if "highlights" in examples else examples["summary"], 
#                                max_length=400, truncation=True, padding="max_length")
#             inputs["labels"] = targets["input_ids"]
#             return inputs
        
#         tokenized_dataset = combined_dataset.map(preprocess_function, batched=True)
#         train_dataset = tokenized_dataset.select(range(8000))  # 80%
#         eval_dataset = tokenized_dataset.select(range(8000, 10000))  # 20%
        
#         training_args = TrainingArguments(
#             output_dir="./pegasus_finetune",
#             num_train_epochs=3,  # Increased for better fine-tuning
#             per_device_train_batch_size=1,
#             per_device_eval_batch_size=1,
#             warmup_steps=500,
#             weight_decay=0.01,
#             logging_dir="./logs",
#             logging_steps=10,
#             eval_strategy="epoch",
#             save_strategy="epoch",
#             load_best_model_at_end=True,
#         )
        
#         trainer = Trainer(
#             model=model,
#             args=training_args,
#             train_dataset=train_dataset,
#             eval_dataset=eval_dataset,
#         )
        
#         trainer.train()
#         trainer.save_model(PEGASUS_MODEL_DIR)
#         tokenizer.save_pretrained(PEGASUS_MODEL_DIR)
#         print(f"Fine-tuned Pegasus saved to {PEGASUS_MODEL_DIR}")
    
#     return tokenizer, model

# # BERT Fine-Tuning
# def load_or_finetune_bert():
#     if os.path.exists(BERT_MODEL_DIR):
#         print("Loading fine-tuned BERT model...")
#         tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_DIR)
#         model = BertForSequenceClassification.from_pretrained(BERT_MODEL_DIR, num_labels=2)
#     else:
#         print("Fine-tuning BERT on CNN/Daily Mail for extractive summarization...")
#         tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
#         model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)
        
#         # Load dataset and preprocess for sentence classification
#         cnn_dm = load_dataset("cnn_dailymail", "3.0.0", split="train[:5000]")
        
#         def preprocess_for_extractive(examples):
#             sentences = []
#             labels = []
#             for article, highlights in zip(examples["article"], examples["highlights"]):
#                 article_sents = article.split(". ")
#                 highlight_sents = highlights.split(". ")
#                 for sent in article_sents:
#                     if sent.strip():
#                         # Label as 1 if sentence is similar to any highlight, else 0
#                         is_summary = any(sent.strip() in h for h in highlight_sents)
#                         sentences.append(sent)
#                         labels.append(1 if is_summary else 0)
#             return {"sentence": sentences, "label": labels}
        
#         dataset = cnn_dm.map(preprocess_for_extractive, batched=True, remove_columns=["article", "highlights", "id"])
#         tokenized_dataset = dataset.map(
#             lambda x: tokenizer(x["sentence"], max_length=512, truncation=True, padding="max_length"),
#             batched=True
#         )
#         tokenized_dataset = tokenized_dataset.remove_columns(["sentence"])
#         train_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset))))
#         eval_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset)), len(tokenized_dataset)))
        
#         training_args = TrainingArguments(
#             output_dir="./bert_finetune",
#             num_train_epochs=3,
#             per_device_train_batch_size=8,
#             per_device_eval_batch_size=8,
#             warmup_steps=500,
#             weight_decay=0.01,
#             logging_dir="./logs",
#             logging_steps=10,
#             eval_strategy="epoch",
#             save_strategy="epoch",
#             load_best_model_at_end=True,
#         )
        
#         trainer = Trainer(
#             model=model,
#             args=training_args,
#             train_dataset=train_dataset,
#             eval_dataset=eval_dataset,
#         )
        
#         trainer.train()
#         trainer.save_model(BERT_MODEL_DIR)
#         tokenizer.save_pretrained(BERT_MODEL_DIR)
#         print(f"Fine-tuned BERT saved to {BERT_MODEL_DIR}")
    
#     return tokenizer, model

# # LegalBERT Fine-Tuning
# def load_or_finetune_legalbert():
#     if os.path.exists(LEGALBERT_MODEL_DIR):
#         print("Loading fine-tuned LegalBERT model...")
#         tokenizer = BertTokenizer.from_pretrained(LEGALBERT_MODEL_DIR)
#         model = BertForSequenceClassification.from_pretrained(LEGALBERT_MODEL_DIR, num_labels=2)
#     else:
#         print("Fine-tuning LegalBERT on Billsum for extractive summarization...")
#         tokenizer = BertTokenizer.from_pretrained("nlpaueb/legal-bert-base-uncased")
#         model = BertForSequenceClassification.from_pretrained("nlpaueb/legal-bert-base-uncased", num_labels=2)
        
#         # Load dataset
#         billsum = load_dataset("billsum", split="train[:5000]")
        
#         def preprocess_for_extractive(examples):
#             sentences = []
#             labels = []
#             for text, summary in zip(examples["text"], examples["summary"]):
#                 text_sents = text.split(". ")
#                 summary_sents = summary.split(". ")
#                 for sent in text_sents:
#                     if sent.strip():
#                         is_summary = any(sent.strip() in s for s in summary_sents)
#                         sentences.append(sent)
#                         labels.append(1 if is_summary else 0)
#             return {"sentence": sentences, "label": labels}
        
#         dataset = billsum.map(preprocess_for_extractive, batched=True, remove_columns=["text", "summary", "title"])
#         tokenized_dataset = dataset.map(
#             lambda x: tokenizer(x["sentence"], max_length=512, truncation=True, padding="max_length"),
#             batched=True
#         )
#         tokenized_dataset = tokenized_dataset.remove_columns(["sentence"])
#         train_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset))))
#         eval_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset)), len(tokenized_dataset)))
        
#         training_args = TrainingArguments(
#             output_dir="./legalbert_finetune",
#             num_train_epochs=3,
#             per_device_train_batch_size=8,
#             per_device_eval_batch_size=8,
#             warmup_steps=500,
#             weight_decay=0.01,
#             logging_dir="./logs",
#             logging_steps=10,
#             eval_strategy="epoch",
#             save_strategy="epoch",
#             load_best_model_at_end=True,
#         )
        
#         trainer = Trainer(
#             model=model,
#             args=training_args,
#             train_dataset=train_dataset,
#             eval_dataset=eval_dataset,
#         )
        
#         trainer.train()
#         trainer.save_model(LEGALBERT_MODEL_DIR)
#         tokenizer.save_pretrained(LEGALBERT_MODEL_DIR)
#         print(f"Fine-tuned LegalBERT saved to {LEGALBERT_MODEL_DIR}")
    
#     return tokenizer, model

# # Load models
# # pegasus_tokenizer, pegasus_model = load_or_finetune_pegasus()
# # bert_tokenizer, bert_model = load_or_finetune_bert()
# # legalbert_tokenizer, legalbert_model = load_or_finetune_legalbert()

# def extract_text_from_pdf(file_path):
#     text = ""
#     with pdfplumber.open(file_path) as pdf:
#         for page in pdf.pages:
#             text += page.extract_text() or ""
#     return text

# def extract_text_from_image(file_path):
#     image = Image.open(file_path)
#     text = pytesseract.image_to_string(image)
#     return text

# def choose_model(text):
#     legal_keywords = ["court", "legal", "law", "judgment", "contract", "statute", "case"]
#     tfidf = TfidfVectorizer(vocabulary=legal_keywords)
#     tfidf_matrix = tfidf.fit_transform([text.lower()])
#     score = np.sum(tfidf_matrix.toarray())
#     if score > 0.1:
#         return "legalbert"
#     elif len(text.split()) > 50:
#         return "pegasus"
#     else:
#         return "bert"

# def summarize_with_pegasus(text):
#     inputs = pegasus_tokenizer(text, truncation=True, padding="longest", return_tensors="pt", max_length=512)
#     summary_ids = pegasus_model.generate(
#         inputs["input_ids"], 
#         max_length=400, min_length=80, length_penalty=1.5, num_beams=4
#     )
#     return pegasus_tokenizer.decode(summary_ids[0], skip_special_tokens=True)

# def summarize_with_bert(text):
#     sentences = text.split(". ")
#     if len(sentences) < 6:  # Ensure enough for 5 sentences
#         return text
#     inputs = bert_tokenizer(sentences, return_tensors="pt", padding=True, truncation=True, max_length=512)
#     with torch.no_grad():
#         outputs = bert_model(**inputs)
#     logits = outputs.logits
#     probs = torch.softmax(logits, dim=1)[:, 1]  # Probability of being a summary sentence
#     key_sentence_idx = probs.argsort(descending=True)[:5]  # Top 5 sentences
#     return ". ".join([sentences[idx] for idx in key_sentence_idx if sentences[idx].strip()])

# def summarize_with_legalbert(text):
#     sentences = text.split(". ")
#     if len(sentences) < 6:
#         return text
#     inputs = legalbert_tokenizer(sentences, return_tensors="pt", padding=True, truncation=True, max_length=512)
#     with torch.no_grad():
#         outputs = legalbert_model(**inputs)
#     logits = outputs.logits
#     probs = torch.softmax(logits, dim=1)[:, 1]
#     key_sentence_idx = probs.argsort(descending=True)[:5]
#     return ". ".join([sentences[idx] for idx in key_sentence_idx if sentences[idx].strip()])

# # Load Models
# pegasus_tokenizer, pegasus_model = load_or_finetune_pegasus()
# bert_tokenizer, bert_model = load_or_finetune_bert()
# legalbert_tokenizer, legalbert_model = load_or_finetune_legalbert()

# @app.route('/summarize', methods=['POST'])
# def summarize_document():
#     if 'file' not in request.files:
#         return jsonify({"error": "No file uploaded"}), 400
    
#     file = request.files['file']
#     filename = file.filename
#     file.seek(0, os.SEEK_END)
#     file_size = file.tell()
#     if file_size > MAX_FILE_SIZE:
#         return jsonify({"error": f"File size exceeds {MAX_FILE_SIZE // (1024 * 1024)} MB"}), 413
#     file.seek(0)
#     file_path = os.path.join(UPLOAD_FOLDER, filename)
#     try:
#         file.save(file_path)
#     except Exception as e:
#         return jsonify({"error": f"Failed to save file: {str(e)}"}), 500

#     try:
#         if filename.endswith('.pdf'):
#             text = extract_text_from_pdf(file_path)
#         elif filename.endswith(('.png', '.jpeg', '.jpg')):
#             text = extract_text_from_image(file_path)
#         else:
#             os.remove(file_path)
#             return jsonify({"error": "Unsupported file format."}), 400
#     except Exception as e:
#         os.remove(file_path)
#         return jsonify({"error": f"Text extraction failed: {str(e)}"}), 500

#     if not text.strip():
#         os.remove(file_path)
#         return jsonify({"error": "No text extracted"}), 400

#     try:
#         model = choose_model(text)
#         if model == "pegasus":
#             summary = summarize_with_pegasus(text)
#         elif model == "bert":
#             summary = summarize_with_bert(text)
#         elif model == "legalbert":
#             summary = summarize_with_legalbert(text)
#     except Exception as e:
#         os.remove(file_path)
#         return jsonify({"error": f"Summarization failed: {str(e)}"}), 500

#     os.remove(file_path)
#     return jsonify({"model_used": model, "summary": summary})

# if __name__ == '__main__':
#     port = int(os.environ.get("PORT", 5000))
#     app.run(debug=False, host='0.0.0.0', port=port)