File size: 16,224 Bytes
10e9b7d eccf8e4 7d65c66 3c4371f 3f5e7c7 5278562 80dcf49 8554d0b d59f015 e80aab9 3db6293 e80aab9 31243f4 d59f015 b28df92 76f58af 8554d0b 76f58af 3f5e7c7 76f58af 3f5e7c7 76f58af 0a59064 76f58af 0a59064 76f58af 0a59064 46c1cbd a4b8b17 46c1cbd b28df92 3f5e7c7 8554d0b 3f5e7c7 4021bf3 76f58af 80dcf49 76f58af 80dcf49 76f58af 80dcf49 76f58af 80dcf49 76f58af 80dcf49 76f58af 80dcf49 76f58af 80dcf49 76f58af 80dcf49 76f58af 80dcf49 3c81963 b90251f 31243f4 7d65c66 b177367 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 b177367 31243f4 3c4371f 31243f4 b177367 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3c4371f 31243f4 e80aab9 31243f4 3c4371f 7d65c66 3c4371f 7d65c66 31243f4 e80aab9 b177367 7d65c66 3c4371f 31243f4 7d65c66 31243f4 7d65c66 31243f4 3c4371f 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from google import genai
from google.genai import types
import time
from smolagents import CodeAgent, DuckDuckGoSearchTool, WikipediaSearchTool, PythonInterpreterTool, FinalAnswerTool, LiteLLMModel, tool
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
# class BasicAgent:
# def __init__(self):
# print("BasicAgent initialized.")
# def __call__(self, question: str) -> str:
# print(f"Agent received question (first 50 chars): {question[:50]}...")
# fixed_answer = "This is a default answer."
# print(f"Agent returning fixed answer: {fixed_answer}")
# return fixed_answer
# class GeminiModel:
# def __init__(self, model_name="gemini-2.0-flash-exp"):
# api_key = os.getenv("GEMINI_API_KEY")
# if not api_key:
# raise ValueError("GEMINI_API_KEY is missing.")
# os.environ["GOOGLE_API_KEY"] = api_key
# self.client = genai.Client()
# self.model_id = model_name
# self.generation_config = types.GenerateContentConfig(
# temperature=0.4,
# top_p=0.9,
# top_k=40,
# candidate_count=1,
# seed=42,
# presence_penalty=0.0,
# frequency_penalty=0.0,
# )
# def __call__(self, prompt: str, **kwargs) -> str:
# """Send prompt to Gemini."""
# try:
# response = self.client.generate_content(
# model=self.model_id,
# contents=[{"role": "user", "parts": [{"text": prompt}]}],
# generation_config=self.generation_config
# )
# # Return a dictionary that CodeAgent expects
# return {"content": response.candidates[0].content.parts[0].text.strip()}
# except Exception as e:
# return {"content": f"Error during Gemini call: {str(e)}"}
# # Define BasicAgent properly
# class BasicAgent:
# def __init__(self):
# print("Initializing CodeAgent with Gemini + tools.")
# # Load tools
# self.search_tool = DuckDuckGoSearchTool()
# # Build the agent
# self.agent = CodeAgent(
# tools=[self.search_tool],
# model=GeminiModel(), # Our simple Gemini wrapper
# planning_interval=3 # Activate planning
# )
# def __call__(self, question: str) -> str:
# """Call the CodeAgent."""
# print(f"Running agent for task: {question[:50]}...")
# try:
# result = self.agent.run(question)
# # Sleep to respect rate limits
# time.sleep(7)
# return result
# except Exception as e:
# return f"Error running agent: {str(e)}"
# class BasicAgent(ReActAgent):
# def __init__(self):
# print("BasicAgent using local LLM initialized.")
# # Load a small model from Hugging Face
# model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
# self.tokenizer = AutoTokenizer.from_pretrained(model_name)
# self.model = AutoModelForCausalLM.from_pretrained(
# model_name,
# torch_dtype=torch.float16,
# device_map="auto" # Automatically choose GPU/CPU
# )
# super().__init__(tools=[]) # No tools for now
# def call(self, task: str) -> str:
# """Core method for answering a task."""
# prompt = f"Answer the following question concisely:\n\n{task}\n\nAnswer:"
# inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
# with torch.no_grad():
# outputs = self.model.generate(
# **inputs,
# max_new_tokens=200,
# do_sample=True,
# temperature=0.7,
# top_p=0.95,
# top_k=50,
# )
# answer = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# # Extract only the answer part
# return answer.split("Answer:")[-1].strip()
# class BasicAgent:
# def __init__(self):
# print("BasicAgent using local LLM initialized.")
# # Load a small Hugging Face model
# model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" # Change if you want
# self.tokenizer = AutoTokenizer.from_pretrained(model_name)
# self.model = AutoModelForCausalLM.from_pretrained(
# model_name,
# torch_dtype=torch.float16,
# device_map="auto" # Use GPU if available
# )
# def __call__(self, task: str) -> str:
# """Answer a question."""
# prompt = f"Answer the following question clearly and concisely:\n\n{task}\n\nAnswer:"
# inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
# with torch.no_grad():
# outputs = self.model.generate(
# **inputs,
# max_new_tokens=256,
# do_sample=True,
# temperature=0.7,
# top_p=0.9,
# top_k=50,
# )
# decoded = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# # Extract the answer part
# if "Answer:" in decoded:
# return decoded.split("Answer:")[-1].strip()
# return decoded.strip()
# # Setup Gemini Client
# api_key = os.getenv("GEMINI_API_KEY")
# if not api_key:
# raise ValueError("GEMINI_API_KEY is missing.")
# os.environ["GOOGLE_API_KEY"] = api_key
# client = genai.Client()
# model_id = "gemini-2.0-flash-exp"
# generation_config = types.GenerateContentConfig(
# temperature=0.4,
# top_p=0.9,
# top_k=40,
# candidate_count=1,
# seed=42,
# presence_penalty=0.0,
# frequency_penalty=0.0,
# )
@tool
def reverse_string(input_string: str) -> str:
return input_string[::-1]
# Define the real agent
class BasicAgent:
def __init__(self):
print("Improved BasicAgent initialized with Gemini and enhanced tools.")
# Load Gemini through LiteLLM (ensure GEMINI_API_TOKEN is set)
self.model = LiteLLMModel(
model_id="gemini/gemini-2.0-flash-lite",
api_key=os.getenv("GEMINI_API_TOKEN"),
)
# Setup CodeAgent with tools
self.agent = CodeAgent(
tools=[
DuckDuckGoSearchTool(),
WikipediaSearchTool(),
PythonInterpreterTool(),
FinalAnswerTool(),
reverse_string,
],
model=self.model,
max_steps=10,
add_base_tools=True,
additional_authorized_imports=["pandas", "*"]
)
def __call__(self, question: str) -> str:
"""Main callable for processing questions with rate limiting."""
print(f"Running agent for task: {question[:50]}...")
# Prompt with strict output formatting
system_instruction = (
"I will ask you a question. Report your thoughts step by step. "
"Finish your answer only with the final answer. In the final answer don't write explanations. "
"The answer should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. "
"Avoid units, abbreviations, or articles unless specified. "
"Pay attention to each sentence in the question and verify the answer against every part. "
"Try searching more sources if initial results are insufficient.\nQUESTION: "
)
prompt = system_instruction + question
try:
result = self.agent.run(prompt)
except Exception as e:
result = f"Error: {str(e)}"
# Rate limiting to avoid 429 errors or API limits
print("Waiting 3 seconds to respect rate limits...")
time.sleep(3)
return result
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |