Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,8 +7,6 @@ import pandas as pd
|
|
7 |
# from google.genai import types
|
8 |
import torch
|
9 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
10 |
-
from smolagents.agents import ReActAgent
|
11 |
-
from smolagents.tools import tool
|
12 |
|
13 |
# (Keep Constants as is)
|
14 |
# --- Constants ---
|
@@ -69,39 +67,72 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
69 |
# print(f"Error during Gemini API call: {str(e)}")
|
70 |
# return f"Error: {str(e)}"
|
71 |
|
72 |
-
class BasicAgent(ReActAgent):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
def __init__(self):
|
74 |
print("BasicAgent using local LLM initialized.")
|
75 |
|
76 |
-
# Load a small
|
77 |
-
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" #
|
78 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
79 |
self.model = AutoModelForCausalLM.from_pretrained(
|
80 |
model_name,
|
81 |
torch_dtype=torch.float16,
|
82 |
-
device_map="auto" #
|
83 |
)
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
"""Core method for answering a task."""
|
89 |
-
prompt = f"Answer the following question concisely:\n\n{task}\n\nAnswer:"
|
90 |
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
91 |
|
92 |
with torch.no_grad():
|
93 |
outputs = self.model.generate(
|
94 |
**inputs,
|
95 |
-
max_new_tokens=
|
96 |
do_sample=True,
|
97 |
temperature=0.7,
|
98 |
-
top_p=0.
|
99 |
top_k=50,
|
100 |
)
|
101 |
-
|
102 |
|
103 |
-
# Extract
|
104 |
-
|
|
|
|
|
105 |
|
106 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
107 |
"""
|
|
|
7 |
# from google.genai import types
|
8 |
import torch
|
9 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
10 |
|
11 |
# (Keep Constants as is)
|
12 |
# --- Constants ---
|
|
|
67 |
# print(f"Error during Gemini API call: {str(e)}")
|
68 |
# return f"Error: {str(e)}"
|
69 |
|
70 |
+
# class BasicAgent(ReActAgent):
|
71 |
+
# def __init__(self):
|
72 |
+
# print("BasicAgent using local LLM initialized.")
|
73 |
+
|
74 |
+
# # Load a small model from Hugging Face
|
75 |
+
# model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" # You can pick another lightweight model
|
76 |
+
# self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
77 |
+
# self.model = AutoModelForCausalLM.from_pretrained(
|
78 |
+
# model_name,
|
79 |
+
# torch_dtype=torch.float16,
|
80 |
+
# device_map="auto" # Automatically choose GPU/CPU
|
81 |
+
# )
|
82 |
+
|
83 |
+
# super().__init__(tools=[]) # No tools for now
|
84 |
+
|
85 |
+
# def call(self, task: str) -> str:
|
86 |
+
# """Core method for answering a task."""
|
87 |
+
# prompt = f"Answer the following question concisely:\n\n{task}\n\nAnswer:"
|
88 |
+
# inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
89 |
+
|
90 |
+
# with torch.no_grad():
|
91 |
+
# outputs = self.model.generate(
|
92 |
+
# **inputs,
|
93 |
+
# max_new_tokens=200,
|
94 |
+
# do_sample=True,
|
95 |
+
# temperature=0.7,
|
96 |
+
# top_p=0.95,
|
97 |
+
# top_k=50,
|
98 |
+
# )
|
99 |
+
# answer = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
100 |
+
|
101 |
+
# # Extract only the answer part
|
102 |
+
# return answer.split("Answer:")[-1].strip()
|
103 |
+
class BasicAgent:
|
104 |
def __init__(self):
|
105 |
print("BasicAgent using local LLM initialized.")
|
106 |
|
107 |
+
# Load a small Hugging Face model
|
108 |
+
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" # Change if you want
|
109 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
110 |
self.model = AutoModelForCausalLM.from_pretrained(
|
111 |
model_name,
|
112 |
torch_dtype=torch.float16,
|
113 |
+
device_map="auto" # Use GPU if available
|
114 |
)
|
115 |
|
116 |
+
def __call__(self, task: str) -> str:
|
117 |
+
"""Answer a question."""
|
118 |
+
prompt = f"Answer the following question clearly and concisely:\n\n{task}\n\nAnswer:"
|
|
|
|
|
119 |
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
120 |
|
121 |
with torch.no_grad():
|
122 |
outputs = self.model.generate(
|
123 |
**inputs,
|
124 |
+
max_new_tokens=256,
|
125 |
do_sample=True,
|
126 |
temperature=0.7,
|
127 |
+
top_p=0.9,
|
128 |
top_k=50,
|
129 |
)
|
130 |
+
decoded = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
131 |
|
132 |
+
# Extract the answer part
|
133 |
+
if "Answer:" in decoded:
|
134 |
+
return decoded.split("Answer:")[-1].strip()
|
135 |
+
return decoded.strip()
|
136 |
|
137 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
138 |
"""
|