Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,511 Bytes
bcc039b 6ffeb66 bcc039b 6ffeb66 bcc039b fc946a1 6ffeb66 bcc039b fc946a1 bcc039b a37fec7 661d10b 6ffeb66 bcc039b fc946a1 bcc039b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
import json
import logging
import os
import torch
from bytelatent.transformer import LMTransformer, LMTransformerArgs
logger = logging.getLogger()
def load_entropy_model(entropy_model_checkpoint_dir, state_dict_path, device="cpu"):
with open(os.path.join(entropy_model_checkpoint_dir, "params.json")) as fr:
reloaded = json.loads(fr.read())
torch.set_default_dtype(torch.bfloat16)
model_params = reloaded["entropy_model"]
logger.warning(
"Update checkpoint to load attn and sliding window args from checkpoint"
)
entropy_model = LMTransformer(
LMTransformerArgs(
dim=model_params["dim"],
n_layers=model_params["n_layers"],
n_heads=model_params["n_heads"],
max_seqlen=model_params["max_seqlen"],
ffn_dim_multiplier=model_params["ffn_dim_multiplier"],
vocab_size=model_params["vocab_size"],
attn_bias_type="local_block_causal" if torch.cuda.is_available() else "causal",
attn_impl="xformers" if torch.cuda.is_available() else "sdpa",
sliding_window=512,
)
)
entropy_model.load_state_dict(
torch.load(state_dict_path, map_location=device)["model"], strict=False
)
entropy_model.to(device)
entropy_model = entropy_model.eval()
# no grads for the model:
for param in entropy_model.parameters():
param.requires_grad = False
return entropy_model
|