Spaces:
Running
on
Zero
Running
on
Zero
Some fixes for entropy model predictions (#83)
Browse filesCo-authored-by: Srini Iyer <[email protected]>
bytelatent/data/patcher.py
CHANGED
@@ -91,7 +91,7 @@ def calculate_entropies(
|
|
91 |
split = split.reshape(-1, max_length)
|
92 |
if device is not None:
|
93 |
split = split.to(device)
|
94 |
-
assert torch.all(split >= 0) and torch.all(split < 260)
|
95 |
pred = entropy_model(split)
|
96 |
pred = pred.reshape(-1, pred.shape[-1])[
|
97 |
: split.numel() - pad_size, :
|
@@ -103,7 +103,7 @@ def calculate_entropies(
|
|
103 |
concat_entropies = torch.cat(entropies, dim=0)
|
104 |
concat_entropies = concat_entropies.reshape(tokens.shape)
|
105 |
concat_preds = torch.cat(preds, dim=0)
|
106 |
-
concat_preds = concat_preds.reshape(tokens.shape[0],
|
107 |
return concat_entropies, concat_preds
|
108 |
|
109 |
|
|
|
91 |
split = split.reshape(-1, max_length)
|
92 |
if device is not None:
|
93 |
split = split.to(device)
|
94 |
+
# assert torch.all(split >= 0) and torch.all(split < 260)
|
95 |
pred = entropy_model(split)
|
96 |
pred = pred.reshape(-1, pred.shape[-1])[
|
97 |
: split.numel() - pad_size, :
|
|
|
103 |
concat_entropies = torch.cat(entropies, dim=0)
|
104 |
concat_entropies = concat_entropies.reshape(tokens.shape)
|
105 |
concat_preds = torch.cat(preds, dim=0)
|
106 |
+
concat_preds = concat_preds.reshape(tokens.shape[0], -1)
|
107 |
return concat_entropies, concat_preds
|
108 |
|
109 |
|
bytelatent/entropy_model.py
CHANGED
@@ -15,7 +15,7 @@ def load_entropy_model(entropy_model_checkpoint_dir, state_dict_path, device="cp
|
|
15 |
reloaded = json.loads(fr.read())
|
16 |
|
17 |
torch.set_default_dtype(torch.bfloat16)
|
18 |
-
model_params = reloaded["
|
19 |
logger.warning(
|
20 |
"Update checkpoint to load attn and sliding window args from checkpoint"
|
21 |
)
|
@@ -24,7 +24,7 @@ def load_entropy_model(entropy_model_checkpoint_dir, state_dict_path, device="cp
|
|
24 |
dim=model_params["dim"],
|
25 |
n_layers=model_params["n_layers"],
|
26 |
n_heads=model_params["n_heads"],
|
27 |
-
max_seqlen=model_params["
|
28 |
ffn_dim_multiplier=model_params["ffn_dim_multiplier"],
|
29 |
vocab_size=model_params["vocab_size"],
|
30 |
attn_bias_type="local_block_causal",
|
@@ -34,7 +34,7 @@ def load_entropy_model(entropy_model_checkpoint_dir, state_dict_path, device="cp
|
|
34 |
)
|
35 |
|
36 |
entropy_model.load_state_dict(
|
37 |
-
torch.load(state_dict_path, map_location=device), strict=False
|
38 |
)
|
39 |
entropy_model.to(device)
|
40 |
entropy_model = entropy_model.eval()
|
|
|
15 |
reloaded = json.loads(fr.read())
|
16 |
|
17 |
torch.set_default_dtype(torch.bfloat16)
|
18 |
+
model_params = reloaded["entropy_model"]
|
19 |
logger.warning(
|
20 |
"Update checkpoint to load attn and sliding window args from checkpoint"
|
21 |
)
|
|
|
24 |
dim=model_params["dim"],
|
25 |
n_layers=model_params["n_layers"],
|
26 |
n_heads=model_params["n_heads"],
|
27 |
+
max_seqlen=model_params["max_seqlen"],
|
28 |
ffn_dim_multiplier=model_params["ffn_dim_multiplier"],
|
29 |
vocab_size=model_params["vocab_size"],
|
30 |
attn_bias_type="local_block_causal",
|
|
|
34 |
)
|
35 |
|
36 |
entropy_model.load_state_dict(
|
37 |
+
torch.load(state_dict_path, map_location=device)["model"], strict=False
|
38 |
)
|
39 |
entropy_model.to(device)
|
40 |
entropy_model = entropy_model.eval()
|