Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,089 Bytes
bcc039b b79eb3e bcc039b 392117b bcc039b 7622d28 bcc039b 392117b bcc039b 392117b bcc039b 392117b bcc039b fc946a1 1da3dd9 bcc039b 392117b bcc039b 1da3dd9 392117b fc946a1 392117b bcc039b 392117b bcc039b 392117b bcc039b 96d51b5 bcc039b b79eb3e 96d51b5 bcc039b 7622d28 bcc039b 7622d28 bcc039b 392117b bcc039b 392117b bcc039b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
import math
import os
import time
from collections import defaultdict
from contextlib import nullcontext
from enum import Enum
import torch
from pydantic import BaseModel
from torch.nn import functional as F
from bytelatent.distributed import get_local_rank
from bytelatent.entropy_model import load_entropy_model
# from src.slurm import get_local_rank
from bytelatent.tokenizers.blt_tokenizer import BPE_ID, OFFSET
from bytelatent.tokenizers.constants import BPE_ID, OFFSET
class PatchingModeEnum(str, Enum):
entropy = "entropy"
bpe = "bpe"
bpe_patcher = "bpe_patcher"
space = "space"
static = "static"
byte = "byte"
class PatcherArgs(BaseModel):
patching_mode: PatchingModeEnum = PatchingModeEnum.entropy
patching_device: str = "cuda"
entropy_model_checkpoint_dir: str | None = None
realtime_patching: bool = False
threshold: float = 1.335442066192627
threshold_add: float | None = None
max_patch_length: int | None = None
patch_size: float = 4.5
patching_batch_size: int = 1
device: str = "cuda"
monotonicity: bool = False
log_time: bool = False
def build(self) -> "Patcher":
return Patcher(self)
def entropy(scores):
"""
scores: [bs, seq_len, vocab]
returns [bs, seq_len]
Computes the entropy for each token in the batch.
Note: uses natural log.
"""
log_probs = F.log_softmax(scores, dim=-1)
probs = torch.exp(log_probs)
p_log_p = log_probs * probs
entropy = -p_log_p.sum(dim=-1)
return entropy
def calculate_entropies(
tokens: torch.tensor,
entropy_model,
patching_batch_size,
device: str | None = None,
enable_grad: bool = False,
):
"""
tokens: 2D tensor of shape [batch_size, seq_len]
Return 2D tensor of shape [batch_size, seq_len] with entropies for each token.
Splits the tokens into chunks of size max_length and calculates entropies for each chunk.
Entropy model can be executed on cpu or gpu, specify either 'cuda' or 'cpu' in the device argument.
"""
grad_context = nullcontext() if enable_grad else torch.no_grad()
with grad_context:
entropies = []
preds = []
max_length = getattr(entropy_model, "max_length", 8192)
batch_numel = max_length * patching_batch_size
splits = torch.split(tokens.flatten(), batch_numel)
for split in splits:
pad_size = (max_length - (split.numel() % max_length)) % max_length
pad = torch.zeros(
pad_size, dtype=split.dtype, device=split.device, requires_grad=False
)
split = torch.cat((split, pad), dim=0)
split = split.reshape(-1, max_length)
if device is not None:
split = split.to(device)
# assert torch.all(split >= 0) and torch.all(split < 260)
pred = entropy_model(split)
pred = pred.reshape(-1, pred.shape[-1])[
: split.numel() - pad_size, :
] # [batch_size * seq_len, vocab]
preds.append(pred)
pred_entropies = entropy(pred)
entropies.append(pred_entropies)
concat_entropies = torch.cat(entropies, dim=0)
concat_entropies = concat_entropies.reshape(tokens.shape)
concat_preds = torch.cat(preds, dim=0)
concat_preds = concat_preds.reshape(tokens.shape[0], -1)
return concat_entropies, concat_preds
def patch_start_mask_from_entropy_with_monotonicity(entropies, t):
"""
entropies: [bs, seq_len] torch tensor of entropies
t: threshold
returns [bs, seq_len] mask where True indicates the start of a patch
"""
bs, seq_len = entropies.shape
if seq_len == 0:
return entropies > t
mask = torch.zeros_like(entropies, dtype=torch.bool)
mask[:, 0] = True
# Calculate differences between consecutive elements along the sequence length
differences = entropies[:, 1:] - entropies[:, :-1]
# Calculate conditions for all elements except the first one in each sequence
condition = differences > t
# Update the mask based on the condition
mask[:, 1:] = condition
return mask
def patch_start_mask_global_and_monotonicity(entropies, t, t_add=0):
"""
entropies: [bs, seq_len] torch tensor of entropies
t: threshold
returns [bs, seq_len] mask where True indicates the start of a patch
"""
bs, seq_len = entropies.shape
if seq_len == 0:
return entropies > t
mask = torch.zeros_like(entropies, dtype=torch.bool)
mask[:, 0] = True
# Calculate differences between consecutive elements along the sequence length
differences = entropies[:, 1:] - entropies[:, :-1]
# Calculate conditions for all elements except the first one in each sequence
condition = (differences > t_add) & (entropies[:, 1:] > t) & (~mask[:, :-1])
# Update the mask based on the condition
mask[:, 1:] = condition
return mask
def patch_start_ids_from_patch_start_mask(patch_start_mask):
bs, trunc_seq_len = patch_start_mask.shape
max_patches = patch_start_mask.sum(dim=1).max()
if max_patches == 0:
patch_start_ids = torch.full(
(bs, trunc_seq_len),
trunc_seq_len,
dtype=torch.long,
device=patch_start_mask.device,
)
else:
patch_ids = (
torch.arange(trunc_seq_len, device=patch_start_mask.device)
.unsqueeze(0)
.repeat(bs, 1)
)
extra_patch_ids = torch.full(
(bs, trunc_seq_len),
trunc_seq_len,
dtype=torch.long,
device=patch_start_mask.device,
)
all_patch_ids = torch.cat((patch_ids, extra_patch_ids), dim=1)
patch_start_mask_padded = torch.cat(
(patch_start_mask, ~patch_start_mask), dim=1
)
patch_start_ids = all_patch_ids[patch_start_mask_padded].reshape(
bs, trunc_seq_len
)[:, :max_patches]
return patch_start_ids
def check_non_zero_after_zero(tensor):
zero_mask = tensor == 0
shifted_mask = torch.cat(
[
torch.zeros(tensor.shape[0], 1, dtype=torch.bool, device=tensor.device),
zero_mask[:, :-1],
],
dim=1,
)
non_zero_after_zero = (tensor != 0) & shifted_mask
return non_zero_after_zero.any()
def patch_lengths_from_start_ids(patch_start_ids, seq_len):
"""
Calculate patch lengths from start ids.
start ids: ex: [0, 1, 7, 7, 7, 7, 7], it has the start ids of the patches (here 0, 1), and then
the rest are filled to the seq len.
seq_len: ex: 7 length of the sequence
returns the patch lengths:
[1, 6] for the above example.
"""
last_ids = torch.full_like(patch_start_ids[:, :1], seq_len - 1)
patch_end_ids = torch.cat((patch_start_ids[:, 1:] - 1, last_ids), dim=1)
patch_lengths = patch_end_ids - patch_start_ids + 1
assert torch.all(patch_lengths >= 0), f"{patch_lengths}"
assert not check_non_zero_after_zero(patch_lengths), f"{patch_lengths}"
return patch_lengths
def find_space_patch_start_ids(tokens):
bs, seq_len = tokens.shape
tokens_no_offset = tokens - OFFSET
patch_end_mask = (
(tokens_no_offset < ord("0"))
| ((ord("9") < tokens_no_offset) & (tokens_no_offset < ord("A")))
| ((ord("Z") < tokens_no_offset) & (tokens_no_offset < ord("a")))
| ((ord("z") < tokens_no_offset) & (tokens_no_offset < 0b1000_0000))
| (0b1100_0000 <= tokens_no_offset)
)
patch_end_mask[:, 1:] &= patch_end_mask[:, :-1].bitwise_not()
patch_end_mask |= tokens < OFFSET
patch_start_mask = torch.cat(
[
torch.tensor([1, 1], device=tokens.device, dtype=torch.bool)
.unsqueeze(0)
.repeat(bs, 1),
patch_end_mask[:, 1:],
],
dim=1,
)
max_patches = patch_start_mask.sum(dim=1).max()
patch_ids = (
torch.arange(seq_len + 1, device=tokens.device).unsqueeze(0).repeat(bs, 1)
)
extra_patch_ids = torch.full(
(bs, seq_len + 1), seq_len + 1, dtype=torch.long, device=tokens.device
)
all_patch_ids = torch.cat((patch_ids, extra_patch_ids), dim=1)
patch_start_mask_padded = torch.cat((patch_start_mask, ~patch_start_mask), dim=1)
patch_start_ids = all_patch_ids[patch_start_mask_padded].reshape(bs, -1)[
:, :max_patches
]
return patch_start_ids
def to_device(entropy_model, device=None):
if device == "cuda":
rank = get_local_rank()
device = f"cuda:{rank}"
entropy_model = entropy_model.to(device)
return entropy_model, device
def model_pred_to_bpe_patching_pred(pred):
_, indices = torch.max(pred, dim=1)
return indices == BPE_ID
def apply_bpe_patcher(tokens, bpe_patcher, patching_batch_size, device=None):
assert tokens.device == torch.device(
"cpu"
), f"{tokens.device} != cpu expects tokens to be on cpu"
with torch.no_grad():
bpe_patcher_device, device = to_device(
bpe_patcher, device
) # Get entropy model to right rank device.
bpe_patching_mask = []
max_length = getattr(bpe_patcher, "max_length", 8192)
batch_numel = max_length * patching_batch_size
splits = torch.split(tokens.flatten(), batch_numel)
for split in splits:
pad_size = (max_length - (split.numel() % max_length)) % max_length
pad = torch.zeros(
pad_size, dtype=split.dtype, device=split.device, requires_grad=False
)
split = torch.cat((split, pad), dim=0)
split = split.reshape(-1, max_length).to(device)
assert torch.all(split >= 0) and torch.all(split < 260)
pred = bpe_patcher_device(split)
pred_cpu = pred[0].cpu()
pred_cpu = pred_cpu.reshape(-1, pred_cpu.shape[-1])[
: split.numel() - pad_size, :
] # [batch_size * seq_len, vocab]
bpe_patching_pred = model_pred_to_bpe_patching_pred(pred_cpu)
bpe_patching_mask.append(bpe_patching_pred)
bpe_patching_mask = torch.cat(bpe_patching_mask, dim=0)
bpe_patching_mask = bpe_patching_mask.reshape(tokens.shape)
return bpe_patching_mask
def find_bpe_patcher_patch_start_ids(
tokens, bpe_patcher, patching_batch_size, device=None, include_next_token=True
):
bs, seq_len = tokens.shape
first_ids = (
torch.tensor([0, 1], dtype=torch.long, device=tokens.device)
.unsqueeze(0)
.repeat(bs, 1)
)
preds_truncation_len = first_ids.shape[1]
token_input = tokens[:, 1:] if include_next_token else tokens[:, 1:-1]
if token_input.shape[1] >= 1:
patch_start_mask = apply_bpe_patcher(
token_input, bpe_patcher, patching_batch_size, device
)
assert (
patch_start_mask.shape[1]
== tokens.shape[1] + include_next_token - preds_truncation_len
), f"{patch_start_mask.shape[1]} != {tokens.shape[1] + include_next_token - preds_truncation_len}"
patch_start_ids = patch_start_ids_from_patch_start_mask(patch_start_mask)
patch_start_ids = torch.cat(
(first_ids, patch_start_ids + preds_truncation_len), dim=1
)
else:
patch_start_ids = first_ids
return patch_start_ids
def find_entropy_patch_start_ids(
entropies,
patch_size=None,
threshold=None,
threshold_add=None,
monotonicity=False,
include_next_token=True,
):
"""
Use entropies to find the start ids of each patch.
Use patch_size or threshold to figure out the total number of patches to allocate.
When threshold is not None the number of patches is not constant between
different sequences, but patches can be identified incrementally rather than
decided globally using the entire sequence.
"""
bs, seq_len = entropies.shape[:2]
first_ids = (
torch.tensor([0, 1], dtype=torch.long, device=entropies.device)
.unsqueeze(0)
.repeat(bs, 1)
)
preds_truncation_len = first_ids.shape[
1
] # remove the first preds because they will be start of patches.
entropies = entropies[:, 1:]
if threshold is None:
num_patches = seq_len // patch_size
patch_start_ids = entropies.topk(num_patches - 2, dim=1).indices
patch_start_ids = patch_start_ids.sort(dim=1).values
else:
# Assumes that there is at least one token going over the threshold
if monotonicity:
patch_start_mask = patch_start_mask_from_entropy_with_monotonicity(
entropies, threshold
)
elif threshold_add is not None and threshold is not None:
patch_start_mask = patch_start_mask_global_and_monotonicity(
entropies, threshold, threshold_add
)
else:
patch_start_mask = entropies > threshold
if not include_next_token:
patch_start_mask = patch_start_mask[:, :-1]
# patch_start_mask[1:] |= tokens[:-1] < OFFSET
patch_start_ids = patch_start_ids_from_patch_start_mask(patch_start_mask)
patch_start_ids = torch.cat(
(first_ids, patch_start_ids + preds_truncation_len), dim=1
)
return patch_start_ids
def rightpad(seq, pad_id, max_len):
return seq + [pad_id] * (max_len - len(seq))
def find_bpe_delim_patch_start_ids(tokens, delim):
ids = (tokens[:, :-1] == delim).nonzero(as_tuple=False)
out = [[0, 1] for _ in range(tokens.shape[0])]
for x, y in ids:
# start is at delim + 1, delim should be the last element in the patch.
out[x.item()].append(y.item() + 1)
max_len = max([len(elt) for elt in out])
out = [rightpad(elt, tokens.shape[1], max_len) for elt in out]
patch_start_ids = torch.tensor(out, dtype=tokens.dtype, device=tokens.device)
return patch_start_ids
def find_lookup_table_start_mask(
tokens: torch.Tensor, lookup_table: torch.Tensor, include_next_token=True
):
window_size = lookup_table.ndim
# Unfold the tensor to get sliding windows
unfolded = tokens.unfold(1, window_size, 1)
# Gather indices for each dimension
indices = [unfolded[..., i] for i in range(window_size)]
# Access the lookup table using the gathered indices
result = lookup_table[indices]
return result
def find_lookup_table_patch_start_ids(
tokens: torch.Tensor, lookup_table: torch.Tensor, include_next_token=True
):
bs, seq_len = tokens.shape
first_ids = (
torch.tensor([0, 1], dtype=torch.long, device=tokens.device)
.unsqueeze(0)
.repeat(bs, 1)
)
preds_truncation_len = first_ids.shape[1]
window_size = lookup_table.ndim
assert window_size == 2, f"{window_size} != 2"
# output dimensions: token_input shape - window_size + 1 --> we want first ids + this = tokens shape + 1 if next token otherwise just token shape
token_input = (
tokens if include_next_token else tokens[:, : -preds_truncation_len + 1]
)
if token_input.shape[1] >= window_size:
patch_start_mask = find_lookup_table_start_mask(
token_input, lookup_table, include_next_token
)
assert (
patch_start_mask.shape[1]
== tokens.shape[1] + include_next_token - preds_truncation_len
), f"{patch_start_mask.shape[1]} != {tokens.shape[1] + include_next_token - preds_truncation_len}"
patch_start_ids = patch_start_ids_from_patch_start_mask(patch_start_mask)
patch_start_ids = torch.cat(
(first_ids, patch_start_ids + preds_truncation_len), dim=1
)
else:
patch_start_ids = first_ids
return patch_start_ids
def split_large_numbers(lst, m):
new_lst = []
for i in lst:
if i > m:
while i > m:
new_lst.append(m)
i -= m
new_lst.append(i)
else:
new_lst.append(i)
assert sum(new_lst) == sum(lst), f"{sum(new_lst)} != {sum(lst)}"
return new_lst
class Patcher:
def __init__(self, patcher_args: PatcherArgs):
self.patcher_args = patcher_args
self.patching_mode = patcher_args.patching_mode
self.realtime_patching = patcher_args.realtime_patching
if self.realtime_patching:
assert (
patcher_args.entropy_model_checkpoint_dir is not None
), "Cannot require realtime patching without an entropy model checkpoint"
maybe_consolidated = os.path.join(
patcher_args.entropy_model_checkpoint_dir,
"consolidated/consolidated.pth",
)
if os.path.exists(maybe_consolidated):
state_path = maybe_consolidated
else:
state_path = os.path.join(
patcher_args.entropy_model_checkpoint_dir, "consolidated.pth"
)
entropy_model = load_entropy_model(
patcher_args.entropy_model_checkpoint_dir,
state_path,
)
entropy_model, _ = to_device(entropy_model, patcher_args.patching_device)
self.entropy_model = entropy_model
else:
self.entropy_model = None
self.threshold = patcher_args.threshold
self.threshold_add = patcher_args.threshold_add
self.max_patch_length = patcher_args.max_patch_length
self.patch_size = patcher_args.patch_size
self.patching_batch_size = patcher_args.patching_batch_size
self.device = patcher_args.device
self.monotonicity = patcher_args.monotonicity
self.log_time = patcher_args.log_time
if self.log_time:
self.log = defaultdict(float)
def patch(
self,
tokens: torch.Tensor,
include_next_token: bool = False,
preds: torch.Tensor | None = None,
entropies: torch.Tensor | None = None,
threshold: float = None,
) -> torch.Tensor:
"""
tokens: 2D tensor of shape [batch_size, seq_len] that needs to be patched
Returns patch lengths and optionally scores associated with the tokens (i.e. entropies, logprobs etc.)
-> output tensor: [batch_size, max_num_patches]
each tensor is processed independently and gets right padded with zeros.
Patching with the following modes:
1. patching_mode = None: static patch size
2. patching_mode = "entropy":
calculate entropy of each token, allocate patches so that the total
number of patches is the same as static patching but choose to begin
patches on tokens where the model is most uncertain (highest entropy).
When threshold is provided, it uses the threshold to decide when to
start a new patch.
3. patching_mode = "space":
use space like tokens to define the patches.
4. patching_mode = "bpe":
use bpe delim tokens to define the patches.
To correctly patch the last token, it may be necessary to include the next token in the patch
lengths calculations. This is controlled by the include_next_token argument.
"""
bs, seq_len = tokens.shape
seq_len_next_tok = seq_len + 1 if include_next_token else seq_len
scores = None
# STATIC
if self.patching_mode == PatchingModeEnum.static:
patch_lengths = torch.zeros(
(bs, math.ceil(seq_len_next_tok / self.patch_size)),
dtype=tokens.dtype,
device=tokens.device,
).fill_(self.patch_size)
if seq_len_next_tok % self.patch_size != 0:
patch_lengths[:, -1] = seq_len_next_tok % self.patch_size
elif self.patching_mode == PatchingModeEnum.byte:
patch_lengths = torch.ones(
(bs, seq_len_next_tok), dtype=tokens.dtype, device=tokens.device
)
# ENTROPY
elif self.patching_mode == PatchingModeEnum.entropy:
if self.log_time:
s = time.time()
if entropies is not None:
scores = entropies.to(dtype=torch.float32)
elif preds is not None:
scores = entropy(preds)
else:
start_entropies = time.time()
scores, _ = calculate_entropies(
tokens,
self.entropy_model,
self.patching_batch_size,
self.device,
)
if self.log_time:
self.log["calculate_entropies"] += time.time() - s
s = time.time()
patch_start_ids = find_entropy_patch_start_ids(
scores,
self.patch_size,
include_next_token=include_next_token,
threshold=threshold if threshold is not None else self.threshold,
threshold_add=self.threshold_add,
monotonicity=self.monotonicity,
)
if self.log_time:
self.log["find_entropy_patch_start_ids"] += time.time() - s
s = time.time()
patch_lengths = patch_lengths_from_start_ids(
patch_start_ids, seq_len_next_tok
)
if self.log_time:
self.log["patch_lengths_from_start_ids"] += time.time() - s
s = time.time()
# BPE
elif self.patching_mode == PatchingModeEnum.bpe:
patch_start_ids = find_bpe_delim_patch_start_ids(tokens, delim=BPE_ID)
patch_lengths = patch_lengths_from_start_ids(
patch_start_ids, seq_len_next_tok
)
elif self.patching_mode == PatchingModeEnum.bpe_patcher:
patch_start_ids = find_bpe_patcher_patch_start_ids(
tokens,
self.entropy_model,
self.patching_batch_size,
self.device,
include_next_token,
)
patch_lengths = patch_lengths_from_start_ids(
patch_start_ids, seq_len_next_tok
)
# SPACE
elif self.patching_mode == PatchingModeEnum.space:
patch_start_ids = find_space_patch_start_ids(tokens)
patch_lengths = patch_lengths_from_start_ids(
patch_start_ids, seq_len_next_tok
)
else:
raise NotImplementedError(f"self.patching_mode {self.patching_mode}")
# Apply any processing to patch lengths
if self.max_patch_length is not None:
# TODO: avoid going back to a list here.
patch_lengths = [
split_large_numbers(pl, self.max_patch_length)
for pl in patch_lengths.tolist()
]
max_len = max([len(pl) for pl in patch_lengths])
patch_lengths = [rightpad(pl, 0, max_len=max_len) for pl in patch_lengths]
patch_lengths = torch.tensor(
patch_lengths, dtype=tokens.dtype, device=tokens.device
)
assert not check_non_zero_after_zero(patch_lengths)
# Find the last non-zero column index using argmax on a reversed version of the tensor
last_non_zero_col_reversed = (
(patch_lengths != 0).flip(dims=[1]).int().argmax(dim=1).min()
)
# Slice the tensor up to the last non-zero column
patch_lengths = patch_lengths[
:, : patch_lengths.shape[1] - last_non_zero_col_reversed
]
assert (
torch.sum(patch_lengths)
== tokens.numel() + include_next_token * tokens.shape[0]
), f"{torch.sum(patch_lengths)} != {tokens.numel() + include_next_token * tokens.shape[0]}"
if self.log_time:
self.log["postprocessing_patch_lengths"] += time.time() - s
self.log["tokens"] += patch_lengths.sum().item()
return patch_lengths, scores
|