Spaces:
Running
Running
File size: 18,147 Bytes
bcc039b 7044771 bcc039b b79eb3e bcc039b b79eb3e 7044771 96d51b5 7044771 bcc039b 7044771 bcc039b 96d51b5 138c2f3 7044771 7517ac2 7044771 bcc039b 7044771 bcc039b 7044771 7517ac2 bcc039b 7044771 bcc039b b79eb3e bcc039b b79eb3e bcc039b b79eb3e bcc039b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
import os
import time
import torch
from omegaconf import OmegaConf
from torch import nn
from torch.nn import functional as F
from torch.nn.attention.flex_attention import create_block_mask
from tqdm import tqdm
from bytelatent.args import EvalArgs, PackedCausalTransformerGeneratorArgs, TrainArgs
from bytelatent.base_transformer import (
Attention,
causal_mask,
generate_doc_mask_mod,
lengths_to_local_ids,
lengths_to_start_ids,
)
from bytelatent.checkpoint import (
CONSOLIDATE_FOLDER,
CONSOLIDATE_NAME,
consolidate_checkpoints,
)
from bytelatent.config_parser import parse_args_to_pydantic_model
from bytelatent.data.file_util import get_fs
from bytelatent.distributed import (
DistributedArgs,
get_global_rank,
setup_torch_distributed,
)
from bytelatent.model.blt import ByteLatentTransformer
from bytelatent.tokenizers.abstract_tokenizer import Tokenizer
from bytelatent.transformer import LMTransformer
def sample_top_p(probs: torch.Tensor, p: float) -> torch.Tensor:
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
probs_sum = torch.cumsum(probs_sort, dim=-1)
mask = probs_sum - probs_sort > p
probs_sort[mask] = 0.0
next_token = torch.multinomial(probs_sort, num_samples=1)
next_token = torch.gather(probs_idx, -1, next_token)
return next_token
def sample_top_k(probs, k):
topk_value, _ = torch.topk(probs, k) # batch_sz x topk
min_value_top_k = topk_value[:, [-1]]
probs[probs < min_value_top_k] = 0.0
probs.div_(probs.sum(dim=-1, keepdim=True))
next_token = torch.multinomial(probs, num_samples=1)
return next_token
def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None):
shape = logits.shape
logits = logits.flatten(end_dim=-2)
if temperature > 0.0:
probs = torch.softmax(logits / temperature, dim=-1)
if top_p is not None:
next_token = sample_top_p(probs, top_p)
elif top_k is not None:
next_token = sample_top_k(probs, top_k)
else:
next_token = torch.multinomial(probs, num_samples=1)
else:
next_token = torch.argmax(logits, dim=-1)
return next_token.view(shape[:-1])
def pack_prompts(prompts: list[int]):
res = []
lengths = []
for i, p in enumerate(prompts):
p = torch.tensor(p, dtype=torch.long)
l = p.size(0)
res.append(p)
lengths.append(l)
lengths = torch.tensor(lengths, dtype=torch.long)
res = torch.cat(res)
return res, lengths
def batch_prompts(prompts, max_elements, lengths=None):
batches = []
current_batch = []
current_count = 0
for i in range(len(prompts)):
prt = prompts[i]
prompt_size = len(prt) if lengths is None else lengths[i]
if current_count + prompt_size <= max_elements:
current_batch.append(prt)
current_count += prompt_size
else:
if current_batch: # Add the current batch to batches
batches.append(current_batch)
# Start a new batch with the current prompt
current_batch = [prt]
current_count = prompt_size
# Add the last batch if it contains any prompts
if current_batch:
batches.append(current_batch)
return batches
class KVCache(nn.Module):
def __init__(self, bsz, seqlen, n_heads, head_dim, dtype, device):
super().__init__()
shape = (bsz, seqlen, n_heads, head_dim)
self.register_buffer("k_cache", torch.zeros(shape, dtype=dtype, device=device))
self.register_buffer("v_cache", torch.zeros(shape, dtype=dtype, device=device))
self.offset = 0
def reset(self):
self.k_cache.zero_()
self.v_cache.zero_()
self.offset = 0
def update(self, k_val, v_val, tok_idx):
# input_pos: [B], k_val: [B, S, H, D]
self.k_cache.index_copy_(1, self.offset + tok_idx, k_val)
self.v_cache.index_copy_(1, self.offset + tok_idx, v_val)
return self.k_cache, self.v_cache
class PackedCausalTransformerGenerator:
def __init__(
self,
cfg: PackedCausalTransformerGeneratorArgs,
model: nn.Module,
tokenizer: Tokenizer,
):
"""
This class wraps a causal transformer model with its corresponding tokenizer
and provides an efficient way to pack prompts together and do generation on
the packed sequence.
For example, if we had the prompts "Hello, I am a " and "Initiating calibration "
Then this class will concatenate those sequence (pack them together)
"Hello, I am a Initiating calibration"
And make the necessary attention masks such that a sequence only attends to itself
during prefilling and generation.
This class creates a fixed size cache of size max_tokens or sum of prompt sizes
+ the max number of generated tokens per sequence.
"""
self.model = model
self.tokenizer = tokenizer
self.temperature = cfg.temperature
self.top_p = cfg.top_p
self.top_k = cfg.top_k
self.max_gen_len = cfg.max_gen_len
self.max_tokens = cfg.max_tokens
self.max_prompt_len = cfg.max_prompt_len
self.until = cfg.until
self.max_until_size = max([len(e) for e in self.until]) if self.until else 1
self.device = cfg.device
# Compile if necessary
self.prefill = torch.compile(self.prefill, disable=not cfg.compile_prefilling)
self.generate_next_token = torch.compile(
self.generate_next_token,
mode="reduce-overhead",
disable=not cfg.reduce_generation_overhead,
)
self.show_progress = cfg.show_progress
self.dtype = dict(fp32=torch.float32, bf16=torch.bfloat16)[cfg.dtype]
self.prefill_doc_id, self.prefill_tok_id = None, None
self.padded_doc_id, self.padded_tok_id = None, None
self.current_doc_id, self.current_tok_id = None, None
self.padded_doc_start = None
self.prefill_mask = None
def clear_cache(self, offset):
for module in self.model.modules():
if isinstance(module, Attention):
if not hasattr(module, "kv_cache"):
module.kv_cache = KVCache(
1,
self.max_tokens,
module.n_kv_heads,
module.head_dim,
self.dtype,
self.device,
)
module.kv_cache.offset = offset
@torch.compiler.disable
def setup_prefilling(self, lengths: torch.Tensor):
# The KV cache is a fixed size tensor of size max_tokens that we need
# to update in order to do correct autoregressive generation.
# Here we will generate token by token but on multiple sequences
# at once. To do so, we need to have an attention mask that makes
# each sequence independent.
# Each sequence will write to its allocated space in the KV Cache.
# We allocate len(seq) + max_gen_len to each sequence in the cache.
# We will generate max_gen_len for each document
padded_lengths = lengths + self.max_gen_len
max_tokens = self.max_tokens or padded_lengths.sum().item()
# The last document might have more padding to fill up to max_tokens
padded_lengths[-1] += max_tokens - padded_lengths.sum()
# This is the start index in the cache for each document
self.padded_doc_start = lengths_to_start_ids(padded_lengths)
# For example with ab--123--cdef--
# this would be 0, 4, 9 if max_gen_len is 2
# We repeat interleave to align with tokens for prefilling
# Ex: ab--123--cdef--
# 000044444999999
prefill_offset = torch.repeat_interleave(self.padded_doc_start, lengths)
# This offset will make sure the tokens are written to the
# correct positions in the cache during prefilling
# We either init the cache or clear it by resetting the offset to prefill_offset
self.clear_cache(prefill_offset)
# The prefilling mask looks like the following for
# the two packed sequences ab and 123 : ab123
# Where spaces are empty cache positions
# keys
# ab---123---
# queries a 10000000000
# b 11000000000
# 1 00000100000
# 2 00000110000
# 3 00000111000
# We make sure to skip the empty cache positions
# and only attend to positions within the same sequence
doc_mask_mod = generate_doc_mask_mod(causal_mask, lengths, padded_lengths)
self.prefill_mask = create_block_mask(
doc_mask_mod, 1, None, lengths.sum(), max_tokens
)
# This creates the prefilling token ids which look like
# the following for the packed sequence abcdefg1234
# abcdefg1234
# 01234560123
# The token id gives us the position within each sequence
# This is used to compute ROPE and to update the cache
# At each forward pass the current tokens are written to
# offset + tok_id
self.prefill_doc_id, self.prefill_tok_id = lengths_to_local_ids(lengths)
# This creates the padded token and document ids
# which look like the following for the packed sequence ab123
# ab---123--- ab---123---
# padded_doc_id 00000111111 padded_tok_id 01234012345
# This will later be useful for the attention mask at generation
self.padded_doc_id, self.padded_tok_id = lengths_to_local_ids(padded_lengths)
@torch.compiler.disable
def setup_generation(self, lengths):
# KV Cache offset is set to the start of the padded documents
for module in self.model.modules():
if isinstance(module, Attention):
module.kv_cache.offset = self.padded_doc_start
# The token ids during generations correspond to the lengths of each doc
# current_tok_id will be incremented during generation
self.current_tok_id = lengths.clone()
# Since we're generating one token per document
# the document id is just an arange
self.current_doc_id = torch.arange(lengths.size(0), device=lengths.device)
# From here on some methods for generation
def prefill(self, tokens: torch.Tensor, lengths: torch.Tensor):
# Prefilling is done by taking multiple packed sequences and
# doing block diagonal attention on them so they remain independent
self.setup_prefilling(lengths=lengths)
prefill_out = self.model.forward(
tokens,
tok_idx=self.prefill_tok_id,
mask=self.prefill_mask,
attn_impl="flex_attention",
)
self.setup_generation(lengths=lengths)
return prefill_out
def generate_next_token(self, current_token):
# Since we're doing generation with multiple sequences at once
# we need to ignore tokens and cache entries from other sequences
# or in the future.
# Example mask :
# keys
# abc--1234--
# queries c 11100000000
# 4 00000111100
# mask shape : (n_seqs, cache_size)
doc_mask = self.current_doc_id.unsqueeze(1) == self.padded_doc_id.unsqueeze(0)
caus_mask = self.current_tok_id.unsqueeze(1) >= self.padded_tok_id.unsqueeze(0)
mask = doc_mask & caus_mask
out = self.model.forward(
current_token,
tok_idx=self.current_tok_id, # n_seqs
mask=mask,
attn_impl="sdpa",
)
self.current_tok_id += 1
return out
@torch.inference_mode()
def generate(self, prompts):
# Tokenize
prompts = [
self.tokenizer.encode(p, add_bos=True, add_eos=False) for p in prompts
]
# Truncate
max_seqlen = (
self.max_tokens
if not hasattr(self.model, "max_seqlen")
else self.model.max_seqlen
)
max_prompt_len = self.max_prompt_len or min(
max_seqlen - self.max_gen_len, self.max_tokens - self.max_gen_len
)
prompts = [p[-max_prompt_len:] for p in prompts]
# Account for the generation in lengths
padded_lengths = [len(p) + self.max_gen_len for p in prompts]
generation = []
loglikelihood = []
greedy = []
it = batch_prompts(prompts, self.max_tokens, lengths=padded_lengths)
if self.show_progress:
it = tqdm(it)
for batch in it:
n_seqs = len(batch)
generated_tokens = [[] for _ in range(n_seqs)]
is_done = [False for _ in range(n_seqs)]
packed_batch, lengths = pack_prompts(batch)
packed_batch, lengths = packed_batch.cuda(), lengths.cuda()
n_seqs = lengths.size(0)
# Prefilling cache
prompt_logits = self.prefill(packed_batch.unsqueeze(0), lengths)
# Selecting last token in each prompt
all_tokens = sample_tokens(
prompt_logits, self.temperature, self.top_p, self.top_k
)
start_token = all_tokens[:, lengths.cumsum(0) - 1]
for seq_id, tok in enumerate(start_token.squeeze(0).tolist()):
generated_tokens[seq_id].append(tok)
current_token = start_token
for i in range(1, self.max_gen_len):
next_logits = self.generate_next_token(current_token)
next_token = sample_tokens(
next_logits.clone(), self.temperature, self.top_p, self.top_k
)
for seq_id, tok in enumerate(next_token.squeeze(0).tolist()):
if not is_done[seq_id]:
generated_tokens[seq_id].append(tok)
current_end_str = self.tokenizer.decode(
generated_tokens[seq_id][-self.max_until_size :]
)
contains_end_string = any(
[e in current_end_str for e in self.until]
)
is_done[seq_id] = (
contains_end_string or tok == self.tokenizer.eos_id
)
if all(is_done):
break
current_token = next_token
generation.extend([self.tokenizer.decode(g) for g in generated_tokens])
for p, logit in zip(
batch, prompt_logits.squeeze(0).split(lengths.tolist())
):
x = logit[:-1]
y = torch.tensor(p[1:], device=x.device)
loglikelihood.append(-F.cross_entropy(x, y, reduction="none").cpu())
greedy.append((x.argmax(dim=-1) == y).cpu())
return generation, loglikelihood, greedy
def load_consolidated_model_and_tokenizer(consolidated_path, init_distributed=False):
if init_distributed:
distributed_args = DistributedArgs()
distributed_args.configure_world()
if not torch.distributed.is_initialized():
setup_torch_distributed(distributed_args)
train_args_path = os.path.join(consolidated_path, "params.json")
fs = get_fs(train_args_path)
train_args = TrainArgs.model_validate_json(fs.read_text(train_args_path))
if train_args.train_entropy_model:
model_args = train_args.entropy_model
model = LMTransformer(model_args)
else:
model_args = train_args.model
model = ByteLatentTransformer(model_args)
param_dtype = dict(fp32=torch.float32, fp16=torch.float16, bf16=torch.bfloat16)[
train_args.distributed.model_dtype
]
tokenizer = train_args.data.tokenizer_args.build()
with fs.open(os.path.join(consolidated_path, CONSOLIDATE_NAME)) as f:
st_dict = torch.load(f, weights_only=True)
model.load_state_dict(st_dict["model"])
model = model.cuda().eval()
for param in model.parameters():
param.data = param.data.to(dtype=param_dtype)
return model, tokenizer, train_args
def main():
# Load CLI arguments (overrides) and combine with a YAML config
eval_args = parse_args_to_pydantic_model(EvalArgs)
fs = get_fs(eval_args.ckpt_dir, s3_profile=eval_args.s3_profile)
if (
fs.exists(eval_args.ckpt_dir)
and fs.exists(os.path.join(eval_args.ckpt_dir, "params.json"))
and len(fs.glob(os.path.join(eval_args.ckpt_dir, "*.pth"))) != 0
):
consolidate_path = eval_args.ckpt_dir
else:
consolidate_path = os.path.join(eval_args.ckpt_dir, CONSOLIDATE_FOLDER)
if not fs.exists(consolidate_path) and get_global_rank() == 0:
consolidate_path = consolidate_checkpoints(fs, eval_args.ckpt_dir)
model, tokenizer, train_cfg = load_consolidated_model_and_tokenizer(
consolidate_path
)
generator = PackedCausalTransformerGenerator(eval_args.generator, model, tokenizer)
# Allow multiple prompts
prompts = []
while True:
prompt = input("Enter a prompt (or press enter to finish): ")
if not prompt:
break
prompts.append(prompt)
# Start generation
start_time = time.time()
generation, loglikelihood, greedy = generator.generate(prompts)
end_time = time.time()
# Calculate tokens per second
total_tokens = sum(len(tokenizer.encode(gen, False, False)) for gen in generation)
tokens_per_second = total_tokens / (end_time - start_time)
# Display the results
for i, gen in enumerate(generation):
print(f"\nPrompt {i+1}: {prompts[i]}")
print(f"Generated Text: {gen}")
print(f"\nTokens per second: {tokens_per_second:.2f}")
if __name__ == "__main__":
main()
|