File size: 18,147 Bytes
bcc039b
 
7044771
bcc039b
 
 
 
 
 
 
 
 
b79eb3e
bcc039b
 
 
 
 
 
 
b79eb3e
 
 
 
 
 
7044771
96d51b5
 
 
 
 
7044771
 
 
bcc039b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7044771
bcc039b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96d51b5
138c2f3
 
 
 
 
7044771
 
7517ac2
7044771
 
 
 
 
 
 
bcc039b
 
7044771
bcc039b
7044771
7517ac2
 
bcc039b
 
 
 
7044771
bcc039b
 
 
 
b79eb3e
 
 
 
 
 
 
 
 
 
 
 
 
bcc039b
b79eb3e
 
 
bcc039b
b79eb3e
bcc039b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
# Copyright (c) Meta Platforms, Inc. and affiliates.

import os
import time

import torch
from omegaconf import OmegaConf
from torch import nn
from torch.nn import functional as F
from torch.nn.attention.flex_attention import create_block_mask
from tqdm import tqdm

from bytelatent.args import EvalArgs, PackedCausalTransformerGeneratorArgs, TrainArgs
from bytelatent.base_transformer import (
    Attention,
    causal_mask,
    generate_doc_mask_mod,
    lengths_to_local_ids,
    lengths_to_start_ids,
)
from bytelatent.checkpoint import (
    CONSOLIDATE_FOLDER,
    CONSOLIDATE_NAME,
    consolidate_checkpoints,
)
from bytelatent.config_parser import parse_args_to_pydantic_model
from bytelatent.data.file_util import get_fs
from bytelatent.distributed import (
    DistributedArgs,
    get_global_rank,
    setup_torch_distributed,
)
from bytelatent.model.blt import ByteLatentTransformer
from bytelatent.tokenizers.abstract_tokenizer import Tokenizer
from bytelatent.transformer import LMTransformer


def sample_top_p(probs: torch.Tensor, p: float) -> torch.Tensor:
    probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
    probs_sum = torch.cumsum(probs_sort, dim=-1)
    mask = probs_sum - probs_sort > p
    probs_sort[mask] = 0.0
    next_token = torch.multinomial(probs_sort, num_samples=1)
    next_token = torch.gather(probs_idx, -1, next_token)
    return next_token


def sample_top_k(probs, k):
    topk_value, _ = torch.topk(probs, k)  # batch_sz x topk
    min_value_top_k = topk_value[:, [-1]]
    probs[probs < min_value_top_k] = 0.0
    probs.div_(probs.sum(dim=-1, keepdim=True))
    next_token = torch.multinomial(probs, num_samples=1)
    return next_token


def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None):
    shape = logits.shape
    logits = logits.flatten(end_dim=-2)
    if temperature > 0.0:
        probs = torch.softmax(logits / temperature, dim=-1)

        if top_p is not None:
            next_token = sample_top_p(probs, top_p)
        elif top_k is not None:
            next_token = sample_top_k(probs, top_k)
        else:
            next_token = torch.multinomial(probs, num_samples=1)
    else:
        next_token = torch.argmax(logits, dim=-1)
    return next_token.view(shape[:-1])


def pack_prompts(prompts: list[int]):
    res = []
    lengths = []
    for i, p in enumerate(prompts):
        p = torch.tensor(p, dtype=torch.long)
        l = p.size(0)
        res.append(p)
        lengths.append(l)
    lengths = torch.tensor(lengths, dtype=torch.long)
    res = torch.cat(res)
    return res, lengths


def batch_prompts(prompts, max_elements, lengths=None):
    batches = []
    current_batch = []
    current_count = 0

    for i in range(len(prompts)):
        prt = prompts[i]
        prompt_size = len(prt) if lengths is None else lengths[i]
        if current_count + prompt_size <= max_elements:
            current_batch.append(prt)
            current_count += prompt_size
        else:
            if current_batch:  # Add the current batch to batches
                batches.append(current_batch)
            # Start a new batch with the current prompt
            current_batch = [prt]
            current_count = prompt_size

    # Add the last batch if it contains any prompts
    if current_batch:
        batches.append(current_batch)

    return batches


class KVCache(nn.Module):
    def __init__(self, bsz, seqlen, n_heads, head_dim, dtype, device):
        super().__init__()
        shape = (bsz, seqlen, n_heads, head_dim)
        self.register_buffer("k_cache", torch.zeros(shape, dtype=dtype, device=device))
        self.register_buffer("v_cache", torch.zeros(shape, dtype=dtype, device=device))
        self.offset = 0

    def reset(self):
        self.k_cache.zero_()
        self.v_cache.zero_()
        self.offset = 0

    def update(self, k_val, v_val, tok_idx):
        # input_pos: [B], k_val: [B, S, H, D]
        self.k_cache.index_copy_(1, self.offset + tok_idx, k_val)
        self.v_cache.index_copy_(1, self.offset + tok_idx, v_val)
        return self.k_cache, self.v_cache


class PackedCausalTransformerGenerator:
    def __init__(
        self,
        cfg: PackedCausalTransformerGeneratorArgs,
        model: nn.Module,
        tokenizer: Tokenizer,
    ):
        """
        This class wraps a causal transformer model with its corresponding tokenizer
        and provides an efficient way to pack prompts together and do generation on
        the packed sequence.

        For example, if we had the prompts "Hello, I am a " and "Initiating calibration "
        Then this class will concatenate those sequence (pack them together)
        "Hello, I am a Initiating calibration"
        And make the necessary attention masks such that a sequence only attends to itself
        during prefilling and generation.

        This class creates a fixed size cache of size max_tokens or sum of prompt sizes
        + the max number of generated tokens per sequence.
        """
        self.model = model
        self.tokenizer = tokenizer
        self.temperature = cfg.temperature
        self.top_p = cfg.top_p
        self.top_k = cfg.top_k

        self.max_gen_len = cfg.max_gen_len
        self.max_tokens = cfg.max_tokens
        self.max_prompt_len = cfg.max_prompt_len
        self.until = cfg.until
        self.max_until_size = max([len(e) for e in self.until]) if self.until else 1
        self.device = cfg.device

        # Compile if necessary
        self.prefill = torch.compile(self.prefill, disable=not cfg.compile_prefilling)
        self.generate_next_token = torch.compile(
            self.generate_next_token,
            mode="reduce-overhead",
            disable=not cfg.reduce_generation_overhead,
        )

        self.show_progress = cfg.show_progress
        self.dtype = dict(fp32=torch.float32, bf16=torch.bfloat16)[cfg.dtype]

        self.prefill_doc_id, self.prefill_tok_id = None, None
        self.padded_doc_id, self.padded_tok_id = None, None
        self.current_doc_id, self.current_tok_id = None, None
        self.padded_doc_start = None
        self.prefill_mask = None

    def clear_cache(self, offset):
        for module in self.model.modules():
            if isinstance(module, Attention):
                if not hasattr(module, "kv_cache"):
                    module.kv_cache = KVCache(
                        1,
                        self.max_tokens,
                        module.n_kv_heads,
                        module.head_dim,
                        self.dtype,
                        self.device,
                    )
                module.kv_cache.offset = offset

    @torch.compiler.disable
    def setup_prefilling(self, lengths: torch.Tensor):
        # The KV cache is a fixed size tensor of size max_tokens that we need
        # to update in order to do correct autoregressive generation.

        # Here we will generate token by token but on multiple sequences
        # at once. To do so, we need to have an attention mask that makes
        # each sequence independent.

        # Each sequence will write to its allocated space in the KV Cache.
        # We allocate len(seq) + max_gen_len to each sequence in the cache.

        # We will generate max_gen_len for each document
        padded_lengths = lengths + self.max_gen_len
        max_tokens = self.max_tokens or padded_lengths.sum().item()
        # The last document might have more padding to fill up to max_tokens
        padded_lengths[-1] += max_tokens - padded_lengths.sum()

        # This is the start index in the cache for each document
        self.padded_doc_start = lengths_to_start_ids(padded_lengths)
        # For example with ab--123--cdef--
        # this would be 0, 4, 9 if max_gen_len is 2

        # We repeat interleave to align with tokens for prefilling
        # Ex: ab--123--cdef--
        #     000044444999999
        prefill_offset = torch.repeat_interleave(self.padded_doc_start, lengths)
        # This offset will make sure the tokens are written to the
        # correct positions in the cache during prefilling

        # We either init the cache or clear it by resetting the offset to prefill_offset
        self.clear_cache(prefill_offset)

        # The prefilling mask looks like the following for
        # the two packed sequences ab and 123 : ab123
        # Where spaces are empty cache positions
        #                 keys
        #                ab---123---
        #   queries    a 10000000000
        #              b 11000000000
        #              1 00000100000
        #              2 00000110000
        #              3 00000111000
        # We make sure to skip the empty cache positions
        # and only attend to positions within the same sequence
        doc_mask_mod = generate_doc_mask_mod(causal_mask, lengths, padded_lengths)
        self.prefill_mask = create_block_mask(
            doc_mask_mod, 1, None, lengths.sum(), max_tokens
        )

        # This creates the prefilling token ids which look like
        # the following for the packed sequence abcdefg1234
        # abcdefg1234
        # 01234560123
        # The token id gives us the position within each sequence
        # This is used to compute ROPE and to update the cache
        # At each forward pass the current tokens are written to
        # offset + tok_id
        self.prefill_doc_id, self.prefill_tok_id = lengths_to_local_ids(lengths)

        # This creates the padded token and document ids
        # which look like the following for the packed sequence ab123
        #               ab---123---               ab---123---
        # padded_doc_id 00000111111 padded_tok_id 01234012345
        # This will later be useful for the attention mask at generation
        self.padded_doc_id, self.padded_tok_id = lengths_to_local_ids(padded_lengths)

    @torch.compiler.disable
    def setup_generation(self, lengths):
        # KV Cache offset is set to the start of the padded documents
        for module in self.model.modules():
            if isinstance(module, Attention):
                module.kv_cache.offset = self.padded_doc_start
        # The token ids during generations correspond to the lengths of each doc
        # current_tok_id will be incremented during generation
        self.current_tok_id = lengths.clone()
        # Since we're generating one token per document
        # the document id is just an arange
        self.current_doc_id = torch.arange(lengths.size(0), device=lengths.device)

    # From here on some methods for generation
    def prefill(self, tokens: torch.Tensor, lengths: torch.Tensor):
        # Prefilling is done by taking multiple packed sequences and
        # doing block diagonal attention on them so they remain independent
        self.setup_prefilling(lengths=lengths)
        prefill_out = self.model.forward(
            tokens,
            tok_idx=self.prefill_tok_id,
            mask=self.prefill_mask,
            attn_impl="flex_attention",
        )
        self.setup_generation(lengths=lengths)
        return prefill_out

    def generate_next_token(self, current_token):
        # Since we're doing generation with multiple sequences at once
        # we need to ignore tokens and cache entries from other sequences
        # or in the future.
        # Example mask :
        #                  keys
        #                abc--1234--
        #   queries    c 11100000000
        #              4 00000111100

        # mask shape : (n_seqs, cache_size)
        doc_mask = self.current_doc_id.unsqueeze(1) == self.padded_doc_id.unsqueeze(0)
        caus_mask = self.current_tok_id.unsqueeze(1) >= self.padded_tok_id.unsqueeze(0)
        mask = doc_mask & caus_mask
        out = self.model.forward(
            current_token,
            tok_idx=self.current_tok_id,  # n_seqs
            mask=mask,
            attn_impl="sdpa",
        )
        self.current_tok_id += 1
        return out

    @torch.inference_mode()
    def generate(self, prompts):
        # Tokenize
        prompts = [
            self.tokenizer.encode(p, add_bos=True, add_eos=False) for p in prompts
        ]
        # Truncate
        max_seqlen = (
            self.max_tokens
            if not hasattr(self.model, "max_seqlen")
            else self.model.max_seqlen
        )
        max_prompt_len = self.max_prompt_len or min(
            max_seqlen - self.max_gen_len, self.max_tokens - self.max_gen_len
        )
        prompts = [p[-max_prompt_len:] for p in prompts]
        # Account for the generation in lengths
        padded_lengths = [len(p) + self.max_gen_len for p in prompts]
        generation = []
        loglikelihood = []
        greedy = []
        it = batch_prompts(prompts, self.max_tokens, lengths=padded_lengths)
        if self.show_progress:
            it = tqdm(it)
        for batch in it:
            n_seqs = len(batch)
            generated_tokens = [[] for _ in range(n_seqs)]
            is_done = [False for _ in range(n_seqs)]
            packed_batch, lengths = pack_prompts(batch)
            packed_batch, lengths = packed_batch.cuda(), lengths.cuda()
            n_seqs = lengths.size(0)

            # Prefilling cache
            prompt_logits = self.prefill(packed_batch.unsqueeze(0), lengths)
            # Selecting last token in each prompt
            all_tokens = sample_tokens(
                prompt_logits, self.temperature, self.top_p, self.top_k
            )
            start_token = all_tokens[:, lengths.cumsum(0) - 1]

            for seq_id, tok in enumerate(start_token.squeeze(0).tolist()):
                generated_tokens[seq_id].append(tok)

            current_token = start_token
            for i in range(1, self.max_gen_len):

                next_logits = self.generate_next_token(current_token)
                next_token = sample_tokens(
                    next_logits.clone(), self.temperature, self.top_p, self.top_k
                )

                for seq_id, tok in enumerate(next_token.squeeze(0).tolist()):
                    if not is_done[seq_id]:
                        generated_tokens[seq_id].append(tok)
                        current_end_str = self.tokenizer.decode(
                            generated_tokens[seq_id][-self.max_until_size :]
                        )
                        contains_end_string = any(
                            [e in current_end_str for e in self.until]
                        )
                        is_done[seq_id] = (
                            contains_end_string or tok == self.tokenizer.eos_id
                        )
                if all(is_done):
                    break

                current_token = next_token

            generation.extend([self.tokenizer.decode(g) for g in generated_tokens])

            for p, logit in zip(
                batch, prompt_logits.squeeze(0).split(lengths.tolist())
            ):
                x = logit[:-1]
                y = torch.tensor(p[1:], device=x.device)
                loglikelihood.append(-F.cross_entropy(x, y, reduction="none").cpu())
                greedy.append((x.argmax(dim=-1) == y).cpu())

        return generation, loglikelihood, greedy


def load_consolidated_model_and_tokenizer(consolidated_path, init_distributed=False):
    if init_distributed:
        distributed_args = DistributedArgs()
        distributed_args.configure_world()
        if not torch.distributed.is_initialized():
            setup_torch_distributed(distributed_args)
    train_args_path = os.path.join(consolidated_path, "params.json")
    fs = get_fs(train_args_path)
    train_args = TrainArgs.model_validate_json(fs.read_text(train_args_path))

    if train_args.train_entropy_model:
        model_args = train_args.entropy_model
        model = LMTransformer(model_args)
    else:
        model_args = train_args.model
        model = ByteLatentTransformer(model_args)

    param_dtype = dict(fp32=torch.float32, fp16=torch.float16, bf16=torch.bfloat16)[
        train_args.distributed.model_dtype
    ]
    tokenizer = train_args.data.tokenizer_args.build()
    with fs.open(os.path.join(consolidated_path, CONSOLIDATE_NAME)) as f:
        st_dict = torch.load(f, weights_only=True)
    model.load_state_dict(st_dict["model"])
    model = model.cuda().eval()
    for param in model.parameters():
        param.data = param.data.to(dtype=param_dtype)
    return model, tokenizer, train_args


def main():
    # Load CLI arguments (overrides) and combine with a YAML config
    eval_args = parse_args_to_pydantic_model(EvalArgs)

    fs = get_fs(eval_args.ckpt_dir, s3_profile=eval_args.s3_profile)
    if (
        fs.exists(eval_args.ckpt_dir)
        and fs.exists(os.path.join(eval_args.ckpt_dir, "params.json"))
        and len(fs.glob(os.path.join(eval_args.ckpt_dir, "*.pth"))) != 0
    ):
        consolidate_path = eval_args.ckpt_dir
    else:
        consolidate_path = os.path.join(eval_args.ckpt_dir, CONSOLIDATE_FOLDER)
        if not fs.exists(consolidate_path) and get_global_rank() == 0:
            consolidate_path = consolidate_checkpoints(fs, eval_args.ckpt_dir)

    model, tokenizer, train_cfg = load_consolidated_model_and_tokenizer(
        consolidate_path
    )

    generator = PackedCausalTransformerGenerator(eval_args.generator, model, tokenizer)

    # Allow multiple prompts
    prompts = []
    while True:
        prompt = input("Enter a prompt (or press enter to finish): ")
        if not prompt:
            break
        prompts.append(prompt)

    # Start generation
    start_time = time.time()
    generation, loglikelihood, greedy = generator.generate(prompts)
    end_time = time.time()

    # Calculate tokens per second
    total_tokens = sum(len(tokenizer.encode(gen, False, False)) for gen in generation)
    tokens_per_second = total_tokens / (end_time - start_time)

    # Display the results
    for i, gen in enumerate(generation):
        print(f"\nPrompt {i+1}: {prompts[i]}")
        print(f"Generated Text: {gen}")

    print(f"\nTokens per second: {tokens_per_second:.2f}")


if __name__ == "__main__":
    main()