Spaces:
Running
on
Zero
Running
on
Zero
Get generation working for BLT (#86)
Browse filesSummary:
Create a script for simple generation from BLT
Test Plan:
```
python -m bytelatent.generate_blt config=../internal-blt/configs/eval_blt.yaml
```
- bytelatent/args.py +6 -1
- bytelatent/data/patcher.py +6 -1
- bytelatent/distributed.py +6 -0
- bytelatent/eval.py +14 -3
- bytelatent/generate.py +25 -9
- bytelatent/generate_blt.py +209 -0
bytelatent/args.py
CHANGED
@@ -7,7 +7,7 @@ import numpy as np
|
|
7 |
import yaml
|
8 |
from pydantic import BaseModel, ConfigDict
|
9 |
|
10 |
-
from bytelatent.checkpoint import CheckpointArgs
|
11 |
from bytelatent.data.data_types import Batch
|
12 |
from bytelatent.data.file_util import get_fs
|
13 |
from bytelatent.data.iterators.abstract_iterator import StatefulIterator
|
@@ -270,8 +270,11 @@ class EvalArgs(BaseModel):
|
|
270 |
model_config = ConfigDict(extra="forbid")
|
271 |
dump_dir: str | None = None
|
272 |
ckpt_dir: str | None = None
|
|
|
273 |
metric_log_dir: str | None = None
|
274 |
|
|
|
|
|
275 |
run_ppl: bool = True
|
276 |
run_tasks: bool = False
|
277 |
|
@@ -284,6 +287,8 @@ class EvalArgs(BaseModel):
|
|
284 |
|
285 |
global_step: int | None = None # for in-training evaluation
|
286 |
s3_profile: str | None = None
|
|
|
|
|
287 |
|
288 |
|
289 |
class TrainArgs(BaseModel):
|
|
|
7 |
import yaml
|
8 |
from pydantic import BaseModel, ConfigDict
|
9 |
|
10 |
+
from bytelatent.checkpoint import CONSOLIDATE_FOLDER, CheckpointArgs
|
11 |
from bytelatent.data.data_types import Batch
|
12 |
from bytelatent.data.file_util import get_fs
|
13 |
from bytelatent.data.iterators.abstract_iterator import StatefulIterator
|
|
|
270 |
model_config = ConfigDict(extra="forbid")
|
271 |
dump_dir: str | None = None
|
272 |
ckpt_dir: str | None = None
|
273 |
+
entropy_ckpt_dir: str | None = None
|
274 |
metric_log_dir: str | None = None
|
275 |
|
276 |
+
prompts: list[str] | None = None
|
277 |
+
|
278 |
run_ppl: bool = True
|
279 |
run_tasks: bool = False
|
280 |
|
|
|
287 |
|
288 |
global_step: int | None = None # for in-training evaluation
|
289 |
s3_profile: str | None = None
|
290 |
+
consolidate_if_needed: bool = False
|
291 |
+
consolidate_folder: str = CONSOLIDATE_FOLDER
|
292 |
|
293 |
|
294 |
class TrainArgs(BaseModel):
|
bytelatent/data/patcher.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
import math
|
|
|
3 |
import time
|
4 |
from collections import defaultdict
|
5 |
from contextlib import nullcontext
|
@@ -476,7 +477,11 @@ class Patcher:
|
|
476 |
patcher_args.entropy_model_checkpoint_dir is not None
|
477 |
), "Cannot require realtime patching without an entropy model checkpoint"
|
478 |
entropy_model = load_entropy_model(
|
479 |
-
patcher_args.entropy_model_checkpoint_dir
|
|
|
|
|
|
|
|
|
480 |
)
|
481 |
entropy_model, _ = to_device(entropy_model, patcher_args.patching_device)
|
482 |
self.entropy_model = entropy_model
|
|
|
1 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
import math
|
3 |
+
import os
|
4 |
import time
|
5 |
from collections import defaultdict
|
6 |
from contextlib import nullcontext
|
|
|
477 |
patcher_args.entropy_model_checkpoint_dir is not None
|
478 |
), "Cannot require realtime patching without an entropy model checkpoint"
|
479 |
entropy_model = load_entropy_model(
|
480 |
+
patcher_args.entropy_model_checkpoint_dir,
|
481 |
+
os.path.join(
|
482 |
+
patcher_args.entropy_model_checkpoint_dir,
|
483 |
+
"consolidated/consolidated.pth",
|
484 |
+
),
|
485 |
)
|
486 |
entropy_model, _ = to_device(entropy_model, patcher_args.patching_device)
|
487 |
self.entropy_model = entropy_model
|
bytelatent/distributed.py
CHANGED
@@ -162,6 +162,12 @@ def dist_max(x: Union[int, float], mesh: DeviceMesh = None):
|
|
162 |
return tensor
|
163 |
|
164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
def dist_sum(
|
166 |
x: Union[int, float], mesh: DeviceMesh = None, reduce_dtype: torch.dtype = None
|
167 |
):
|
|
|
162 |
return tensor
|
163 |
|
164 |
|
165 |
+
def dist_min(x: Union[int, float], mesh: DeviceMesh = None):
|
166 |
+
tensor = torch.tensor(x).cuda()
|
167 |
+
dist.all_reduce(tensor, op=ReduceOp.MIN, group=mesh.get_group() if mesh else None)
|
168 |
+
return tensor
|
169 |
+
|
170 |
+
|
171 |
def dist_sum(
|
172 |
x: Union[int, float], mesh: DeviceMesh = None, reduce_dtype: torch.dtype = None
|
173 |
):
|
bytelatent/eval.py
CHANGED
@@ -243,9 +243,20 @@ def launch_eval(eval_args: EvalArgs):
|
|
243 |
):
|
244 |
consolidate_path = eval_args.ckpt_dir
|
245 |
else:
|
246 |
-
|
247 |
-
|
248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
|
250 |
fs.mkdirs(eval_args.dump_dir, exist_ok=True)
|
251 |
with fs.open(os.path.join(eval_args.dump_dir, "config.yaml"), "w") as f:
|
|
|
243 |
):
|
244 |
consolidate_path = eval_args.ckpt_dir
|
245 |
else:
|
246 |
+
if eval_args.consolidate_if_needed:
|
247 |
+
logger.info(
|
248 |
+
"Found a model checkpoint, but it has not been consolidated.... so consolidating the checkpoint"
|
249 |
+
)
|
250 |
+
consolidate_path = os.path.join(
|
251 |
+
eval_args.ckpt_dir, eval_args.consolidate_folder
|
252 |
+
)
|
253 |
+
if not fs.exists(consolidate_path) and get_global_rank() == 0:
|
254 |
+
consolidate_path = consolidate_checkpoints(fs, eval_args.ckpt_dir)
|
255 |
+
logger.info("Model consolidated to: %s", consolidate_path)
|
256 |
+
else:
|
257 |
+
raise ValueError(
|
258 |
+
"Did not find a consolidated checkpoint and consolidate_if_needed is False"
|
259 |
+
)
|
260 |
|
261 |
fs.mkdirs(eval_args.dump_dir, exist_ok=True)
|
262 |
with fs.open(os.path.join(eval_args.dump_dir, "config.yaml"), "w") as f:
|
bytelatent/generate.py
CHANGED
@@ -10,7 +10,7 @@ from torch.nn import functional as F
|
|
10 |
from torch.nn.attention.flex_attention import create_block_mask
|
11 |
from tqdm import tqdm
|
12 |
|
13 |
-
from bytelatent.args import PackedCausalTransformerGeneratorArgs, TrainArgs
|
14 |
from bytelatent.base_transformer import (
|
15 |
Attention,
|
16 |
causal_mask,
|
@@ -18,8 +18,14 @@ from bytelatent.base_transformer import (
|
|
18 |
lengths_to_local_ids,
|
19 |
lengths_to_start_ids,
|
20 |
)
|
21 |
-
from bytelatent.checkpoint import
|
|
|
|
|
|
|
|
|
|
|
22 |
from bytelatent.data.file_util import get_fs
|
|
|
23 |
from bytelatent.model.blt import ByteLatentTransformer
|
24 |
from bytelatent.tokenizers.abstract_tokenizer import Tokenizer
|
25 |
from bytelatent.transformer import LMTransformer
|
@@ -411,15 +417,25 @@ def load_consolidated_model_and_tokenizer(
|
|
411 |
|
412 |
def main():
|
413 |
# Load CLI arguments (overrides) and combine with a YAML config
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
419 |
|
420 |
-
model, tokenizer,
|
|
|
|
|
421 |
|
422 |
-
generator = PackedCausalTransformerGenerator(
|
423 |
|
424 |
# Allow multiple prompts
|
425 |
prompts = []
|
|
|
10 |
from torch.nn.attention.flex_attention import create_block_mask
|
11 |
from tqdm import tqdm
|
12 |
|
13 |
+
from bytelatent.args import EvalArgs, PackedCausalTransformerGeneratorArgs, TrainArgs
|
14 |
from bytelatent.base_transformer import (
|
15 |
Attention,
|
16 |
causal_mask,
|
|
|
18 |
lengths_to_local_ids,
|
19 |
lengths_to_start_ids,
|
20 |
)
|
21 |
+
from bytelatent.checkpoint import (
|
22 |
+
CONSOLIDATE_FOLDER,
|
23 |
+
CONSOLIDATE_NAME,
|
24 |
+
consolidate_checkpoints,
|
25 |
+
)
|
26 |
+
from bytelatent.config_parser import parse_args_to_pydantic_model
|
27 |
from bytelatent.data.file_util import get_fs
|
28 |
+
from bytelatent.distributed import get_global_rank
|
29 |
from bytelatent.model.blt import ByteLatentTransformer
|
30 |
from bytelatent.tokenizers.abstract_tokenizer import Tokenizer
|
31 |
from bytelatent.transformer import LMTransformer
|
|
|
417 |
|
418 |
def main():
|
419 |
# Load CLI arguments (overrides) and combine with a YAML config
|
420 |
+
eval_args = parse_args_to_pydantic_model(EvalArgs)
|
421 |
+
|
422 |
+
fs = get_fs(eval_args.ckpt_dir, s3_profile=eval_args.s3_profile)
|
423 |
+
if (
|
424 |
+
fs.exists(eval_args.ckpt_dir)
|
425 |
+
and fs.exists(os.path.join(eval_args.ckpt_dir, "params.json"))
|
426 |
+
and len(fs.glob(os.path.join(eval_args.ckpt_dir, "*.pth"))) != 0
|
427 |
+
):
|
428 |
+
consolidate_path = eval_args.ckpt_dir
|
429 |
+
else:
|
430 |
+
consolidate_path = os.path.join(eval_args.ckpt_dir, CONSOLIDATE_FOLDER)
|
431 |
+
if not fs.exists(consolidate_path) and get_global_rank() == 0:
|
432 |
+
consolidate_path = consolidate_checkpoints(fs, eval_args.ckpt_dir)
|
433 |
|
434 |
+
model, tokenizer, train_cfg = load_consolidated_model_and_tokenizer(
|
435 |
+
consolidate_path
|
436 |
+
)
|
437 |
|
438 |
+
generator = PackedCausalTransformerGenerator(eval_args.generator, model, tokenizer)
|
439 |
|
440 |
# Allow multiple prompts
|
441 |
prompts = []
|
bytelatent/generate_blt.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from bytelatent.args import EvalArgs
|
7 |
+
from bytelatent.config_parser import parse_args_to_pydantic_model
|
8 |
+
from bytelatent.data.file_util import get_fs
|
9 |
+
from bytelatent.data.patcher import Patcher
|
10 |
+
from bytelatent.distributed import (
|
11 |
+
DistributedArgs,
|
12 |
+
dist_max,
|
13 |
+
dist_min,
|
14 |
+
dist_sum,
|
15 |
+
get_device_mesh,
|
16 |
+
setup_torch_distributed,
|
17 |
+
)
|
18 |
+
from bytelatent.generate import load_consolidated_model_and_tokenizer
|
19 |
+
from bytelatent.model.blt import ByteLatentTransformer
|
20 |
+
from bytelatent.tokenizers.blt_tokenizer import BltTokenizer
|
21 |
+
|
22 |
+
logger = logging.getLogger()
|
23 |
+
|
24 |
+
|
25 |
+
def get_max_length(input_tokens: list[list[int]] | None) -> int:
|
26 |
+
# reduce max length prompt over all processes to have an equal number of call on each process with fsdp
|
27 |
+
if input_tokens is None:
|
28 |
+
max_length = 0
|
29 |
+
else:
|
30 |
+
max_length = max([len(t) for t in input_tokens])
|
31 |
+
if torch.distributed.is_initialized():
|
32 |
+
max_length = int(dist_max(max_length))
|
33 |
+
return max_length
|
34 |
+
|
35 |
+
|
36 |
+
def get_min_length(input_tokens: list[list[int]] | None) -> int:
|
37 |
+
# reduce min length prompt over all processes to have an equal number of call on each process with fsdp
|
38 |
+
if input_tokens is None:
|
39 |
+
# TODO: Double check this change from int(1e9) is correct
|
40 |
+
min_length = 0
|
41 |
+
else:
|
42 |
+
min_length = min([len(t) for t in input_tokens])
|
43 |
+
if torch.distributed.is_initialized():
|
44 |
+
min_length = int(dist_min(min_length))
|
45 |
+
return min_length
|
46 |
+
|
47 |
+
|
48 |
+
def get_generation_range(
|
49 |
+
prompt_tokens: list[list[int]] | None, max_gen_len: int
|
50 |
+
) -> tuple[int, int]:
|
51 |
+
batch_min_prompt_length = get_min_length(prompt_tokens)
|
52 |
+
batch_max_prompt_length = get_max_length(prompt_tokens)
|
53 |
+
return batch_min_prompt_length, batch_max_prompt_length + max_gen_len
|
54 |
+
|
55 |
+
|
56 |
+
def sample_top_k(probs, k):
|
57 |
+
topk_value, _ = torch.topk(probs, k) # batch_sz x topk
|
58 |
+
min_value_top_k = topk_value[:, [-1]]
|
59 |
+
probs[probs < min_value_top_k] = 0.0
|
60 |
+
probs.div_(probs.sum(dim=-1, keepdim=True))
|
61 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
62 |
+
return next_token
|
63 |
+
|
64 |
+
|
65 |
+
def sample_top_p(probs, p):
|
66 |
+
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
|
67 |
+
probs_sum = torch.cumsum(probs_sort, dim=-1)
|
68 |
+
mask = probs_sum - probs_sort > p
|
69 |
+
probs_sort[mask] = 0.0
|
70 |
+
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
|
71 |
+
next_token = torch.multinomial(probs_sort, num_samples=1)
|
72 |
+
next_token = torch.gather(probs_idx, -1, next_token)
|
73 |
+
return next_token
|
74 |
+
|
75 |
+
|
76 |
+
@torch.inference_mode()
|
77 |
+
def generate_nocache(
|
78 |
+
prompts: list[str] | None,
|
79 |
+
*,
|
80 |
+
model: ByteLatentTransformer,
|
81 |
+
tokenizer: BltTokenizer,
|
82 |
+
patcher: Patcher,
|
83 |
+
max_prompt_len: int = 256,
|
84 |
+
max_gen_len: int = 256,
|
85 |
+
use_sampling: bool = False,
|
86 |
+
temp: float = 1.0,
|
87 |
+
top_k: int = 0,
|
88 |
+
top_p: float = 0.0,
|
89 |
+
remove_prompts: bool = True,
|
90 |
+
) -> list[list[int]]:
|
91 |
+
assert (
|
92 |
+
patcher.realtime_patching
|
93 |
+
), "generate_nocache requires patcher.realtime_patching=True"
|
94 |
+
model.eval()
|
95 |
+
if prompts is None:
|
96 |
+
prompt_tokens = None
|
97 |
+
n_truncated_prompts = 0
|
98 |
+
total_truncated_prompts = 0
|
99 |
+
else:
|
100 |
+
prompt_tokens = [tokenizer.encode(t, add_eos=False) for t in prompts]
|
101 |
+
n_truncated_prompts = sum([max_prompt_len < len(t) for t in prompt_tokens])
|
102 |
+
total_truncated_prompts = dist_sum(n_truncated_prompts)
|
103 |
+
|
104 |
+
# Truncation
|
105 |
+
prompt_tokens = [
|
106 |
+
t if len(t) < max_prompt_len else t[len(t) - max_prompt_len :]
|
107 |
+
for t in prompt_tokens
|
108 |
+
]
|
109 |
+
|
110 |
+
if total_truncated_prompts > 0:
|
111 |
+
logger.info(
|
112 |
+
f"There are {total_truncated_prompts} prompts that are truncated on the left, "
|
113 |
+
f"length greater than max_prompt_len = {max_prompt_len}, "
|
114 |
+
f"maximum prompt length = {get_max_length(prompt_tokens)} across all gpus."
|
115 |
+
)
|
116 |
+
|
117 |
+
if prompt_tokens is None:
|
118 |
+
prompt_tokens = [[tokenizer.bos_id] for _ in range(end_pos)]
|
119 |
+
|
120 |
+
start_pos, end_pos = get_generation_range(prompt_tokens, max_gen_len)
|
121 |
+
batch_size = len(prompt_tokens)
|
122 |
+
tokens = torch.full((batch_size, end_pos), tokenizer.pad_id).cuda().long()
|
123 |
+
|
124 |
+
# Copy inputs to tensor for generated tokens
|
125 |
+
for i, row_tokens in enumerate(prompt_tokens):
|
126 |
+
tokens[i, : len(row_tokens)] = torch.tensor(row_tokens).long()
|
127 |
+
input_text_mask = tokens != tokenizer.pad_id
|
128 |
+
|
129 |
+
for i, curr_pos in enumerate(range(start_pos, end_pos)):
|
130 |
+
current_tokens = tokens[:, :curr_pos]
|
131 |
+
patch_lengths, _ = patcher.patch(current_tokens, include_next_token=True)
|
132 |
+
logits = model(current_tokens, patch_lengths=patch_lengths)[:, -1]
|
133 |
+
|
134 |
+
if use_sampling:
|
135 |
+
probs = torch.softmax(logits / temp, dim=-1)
|
136 |
+
if top_p > 0.0:
|
137 |
+
next_token = sample_top_p(probs, top_p)
|
138 |
+
elif top_k > 0:
|
139 |
+
next_token = sample_top_k(probs, top_k)
|
140 |
+
else:
|
141 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
142 |
+
else:
|
143 |
+
next_token = torch.argmax(logits, dim=-1)
|
144 |
+
|
145 |
+
next_token = torch.where(
|
146 |
+
input_text_mask[:, curr_pos], tokens[:, curr_pos], next_token
|
147 |
+
)
|
148 |
+
tokens[:, curr_pos] = next_token
|
149 |
+
|
150 |
+
if remove_prompts:
|
151 |
+
generated_tokens = [
|
152 |
+
t[len(prompt_tokens[i]) : len(prompt_tokens[i]) + max_gen_len].tolist()
|
153 |
+
for i, t in enumerate(tokens)
|
154 |
+
]
|
155 |
+
else:
|
156 |
+
generated_tokens = [
|
157 |
+
t[: len(prompt_tokens[i]) + max_gen_len].tolist()
|
158 |
+
for i, t in enumerate(tokens)
|
159 |
+
]
|
160 |
+
return generated_tokens
|
161 |
+
|
162 |
+
|
163 |
+
def launch_generate(eval_args: EvalArgs):
|
164 |
+
assert eval_args.dump_dir is not None
|
165 |
+
assert eval_args.ckpt_dir is not None
|
166 |
+
distributed_args = DistributedArgs()
|
167 |
+
distributed_args.configure_world()
|
168 |
+
if not torch.distributed.is_initialized():
|
169 |
+
setup_torch_distributed(distributed_args)
|
170 |
+
|
171 |
+
world_mesh = get_device_mesh(distributed_args)
|
172 |
+
dp_mesh = world_mesh["dp_replicate"]
|
173 |
+
assert distributed_args.dp_shard == 1
|
174 |
+
world_size = dp_mesh.size()
|
175 |
+
world_rank = dp_mesh.get_local_rank()
|
176 |
+
|
177 |
+
fs = get_fs(eval_args.ckpt_dir, s3_profile=eval_args.s3_profile)
|
178 |
+
if (
|
179 |
+
fs.exists(eval_args.ckpt_dir)
|
180 |
+
and fs.exists(os.path.join(eval_args.ckpt_dir, "params.json"))
|
181 |
+
and len(fs.glob(os.path.join(eval_args.ckpt_dir, "*.pth"))) != 0
|
182 |
+
):
|
183 |
+
consolidate_path = eval_args.ckpt_dir
|
184 |
+
else:
|
185 |
+
raise ValueError("Did not find a consolidated checkpoint in the ckpt_dir")
|
186 |
+
|
187 |
+
model, tokenizer, train_cfg = load_consolidated_model_and_tokenizer(
|
188 |
+
consolidate_path,
|
189 |
+
)
|
190 |
+
patcher_args = train_cfg.data.patcher_args.model_copy(deep=True)
|
191 |
+
patcher_args.realtime_patching = True
|
192 |
+
patcher_args.entropy_model_checkpoint_dir = eval_args.entropy_ckpt_dir
|
193 |
+
patcher = patcher_args.build()
|
194 |
+
outputs = generate_nocache(
|
195 |
+
eval_args.prompts, model=model, tokenizer=tokenizer, patcher=patcher
|
196 |
+
)
|
197 |
+
text_outputs = [tokenizer.decode(t) for t in outputs]
|
198 |
+
for p, t in zip(eval_args.prompts, text_outputs):
|
199 |
+
print(f'Prompt: "{p}" Completion: "{t}"')
|
200 |
+
print()
|
201 |
+
|
202 |
+
|
203 |
+
def main():
|
204 |
+
eval_args = parse_args_to_pydantic_model(EvalArgs)
|
205 |
+
launch_generate(eval_args)
|
206 |
+
|
207 |
+
|
208 |
+
if __name__ == "__main__":
|
209 |
+
main()
|