Spaces:
Running
Running
File size: 17,874 Bytes
bcc039b 7517ac2 bcc039b caec8d2 bcc039b 7517ac2 bcc039b b79eb3e bcc039b fe45f69 bcc039b 7517ac2 bcc039b fe45f69 bcc039b 138c2f3 bcc039b fe45f69 bcc039b fe45f69 bcc039b aebdc48 bcc039b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
import atexit
import contextlib
import logging
import multiprocessing as mp
import os
import random
import shutil
import signal
import socket
import subprocess
import sys
import tempfile
from functools import lru_cache, partial, reduce
from itertools import chain
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
# for no recompute ops
import xformers.ops
from pydantic import BaseModel, ConfigDict
from torch import distributed as dist
from torch.distributed import ReduceOp
from torch.distributed._composable.fsdp import MixedPrecisionPolicy, fully_shard
from torch.distributed._tensor import DTensor
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
)
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import (
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
from bytelatent.float8 import convert_linears_to_fp8
logger = logging.getLogger()
# for selective AC
default_no_recompute_ops = {
torch.ops.aten.mm.default,
torch.ops.aten._scaled_mm.default,
torch.ops.aten._scaled_dot_product_efficient_attention.default,
torch.ops.aten._scaled_dot_product_flash_attention.default,
torch.ops.c10d_functional.reduce_scatter_tensor.default,
torch.ops.xformers_flash.flash_fwd.default,
}
if int(os.environ.get("BLT_ALLOW_MISSING_FLEX_ATTENTION", False)) == 0:
default_no_recompute_ops.add(
torch.ops.xformers.efficient_attention_forward_cutlass.default
)
class DistributedArgs(BaseModel):
model_config = ConfigDict(extra="forbid")
dp_shard: int = (
1 # In how many shard to split the model weight. Typically number gpu in a node.
)
dp_replicate: int = (
1 # How many times to replicate the model weight. Typically number of nodes.
)
tp_size: int = 1
selective_activation_checkpointing: bool = False
compile: bool = False
fsdp_type: str = "no_shard"
model_dtype: str = "bf16"
float8_recipe: str | None = None
float8_filter: str = r"layers\.[0-9]+\."
matmul_allow_tf32: bool = False
allow_bf16_reduced_precision_reduction: bool = True
detect_anomaly: bool = False
compile_cache_size_limit: int = 8
spawn_method: str = "forkserver"
def configure_world(self):
pass
if self.dp_replicate * self.dp_shard * self.tp_size != get_world_size():
logging.info("Modifying TrainArgs distributed config")
assert get_world_size() % self.dp_shard == 0
logging.info("World size: %s", get_world_size())
logging.info(
"Existing setting: train_args.distributed.dp_shard=%s",
self.dp_shard,
)
logging.info(
"Setting train_args.distributed.dp_replicate=%s, was dp_replicate=%s",
get_world_size() // self.dp_shard,
self.dp_replicate,
)
self.dp_replicate = get_world_size() // self.dp_shard
logging.info(
"Changing dp_replicate from %s to %s, to account for tp_size=%s",
self.dp_replicate,
self.dp_replicate // self.tp_size,
self.tp_size,
)
assert self.dp_replicate % self.tp_size == 0
self.dp_replicate = self.dp_replicate // self.tp_size
logger.warning(
f"Setting Data Parallel size to {self.dp_replicate * self.dp_shard}"
)
assert self.dp_replicate * self.dp_shard * self.tp_size == get_world_size()
if self.fsdp_type == "no_shard":
assert self.dp_shard == 1 and self.dp_replicate == get_world_size()
class EnvironmentArgs(BaseModel):
model_config = ConfigDict(extra="forbid")
# Use GNU openMP (GOMP) instead of Intel OpenMP [Intel Math Kernel Library (MKL)]
MKL_SERVICE_FORCE_INTEL: str = "GNU"
OMP_NUM_THREADS: str = "1"
MKL_NUM_THREADS: str = "1"
# faster intra-node collectives, seems to be a cluster specific flag
ENABLE_INTRA_NODE_COMM: str = "1"
# avoids OOMs with long context
TORCH_NCCL_AVOID_RECORD_STREAMS: str = "1"
# increasing NCCL timeout time before having some NCCL error 22 should give a 16s timeout
NCCL_IB_TIMEOUT: str = "22"
NCCL_DEBUG: str = "INFO"
TORCH_NCCL_ASYNC_ERROR_HANDLING: str = "1"
def get_device_mesh(distributed_args: DistributedArgs):
tp_size = distributed_args.tp_size
dp_replicate = distributed_args.dp_replicate
dp_shard = distributed_args.dp_shard
assert (
dp_replicate * dp_shard * tp_size == get_world_size()
), f"dp_replicate * dp_shard * tp_size ({dp_replicate} * {dp_shard} * {tp_size}) != world_size ({get_world_size()})"
dims = []
names = []
if dp_replicate >= 1:
dims.append(dp_replicate)
names.append("dp_replicate")
if dp_shard > 1 or distributed_args.fsdp_type == "no_shard":
dims.append(dp_shard)
names.append("dp_shard")
if tp_size > 1:
dims.append(tp_size)
names.append("tp")
dims = tuple(dims)
names = tuple(names)
return init_device_mesh("cuda", mesh_shape=dims, mesh_dim_names=names)
def dist_max(x: Union[int, float], mesh: DeviceMesh = None):
tensor = torch.tensor(x).cuda()
dist.all_reduce(tensor, op=ReduceOp.MAX, group=mesh.get_group() if mesh else None)
return tensor
def dist_min(x: Union[int, float], mesh: DeviceMesh = None):
tensor = torch.tensor(x).cuda()
dist.all_reduce(tensor, op=ReduceOp.MIN, group=mesh.get_group() if mesh else None)
return tensor
def dist_sum(
x: Union[int, float], mesh: DeviceMesh = None, reduce_dtype: torch.dtype = None
):
tensor = torch.tensor(x).cuda()
if reduce_dtype is not None:
tensor = tensor.to(reduce_dtype)
dist.all_reduce(tensor, op=ReduceOp.SUM, group=mesh.get_group() if mesh else None)
return tensor
def dist_mean(x: Union[int, float], mesh: DeviceMesh = None):
tensor = torch.tensor(x).cuda()
dist.all_reduce(tensor, op=ReduceOp.AVG, group=mesh.get_group() if mesh else None)
return tensor
def dist_mean_dict(x):
r = dict()
for k in x:
r[k] = dist_mean(x[k])
r[k] = r[k].item() if (r[k].dim() == 0) else r[k].tolist()
return r
def to_py_num(num: int | float | torch.Tensor | np.ndarray) -> int | float:
if isinstance(num, (torch.Tensor, np.ndarray)):
return num.item()
else:
return num
@lru_cache()
def get_is_torch_run() -> bool:
return os.environ.get("LOCAL_RANK") is not None
@lru_cache()
def get_is_slurm_job() -> bool:
return "SLURM_JOB_ID" in os.environ and not get_is_torch_run()
@lru_cache()
def get_global_rank() -> int:
if get_is_torch_run():
return int(os.environ["RANK"])
elif get_is_slurm_job():
return int(os.environ["SLURM_PROCID"])
else:
return 0
@lru_cache()
def get_local_rank() -> int:
if get_is_torch_run():
return int(os.environ["LOCAL_RANK"])
elif get_is_slurm_job():
return int(os.environ["SLURM_LOCALID"])
else:
return 0
@lru_cache()
def get_world_size() -> int:
if get_is_torch_run():
return int(os.environ["WORLD_SIZE"])
elif get_is_slurm_job():
return int(os.environ["SLURM_NTASKS"])
else:
return 1
@lru_cache()
def get_is_master() -> bool:
return get_global_rank() == 0
@lru_cache()
def get_master_port(job_id: int) -> int:
if get_is_torch_run():
return int(os.environ["MASTER_PORT"])
else:
MIN_MASTER_PORT, MAX_MASTER_PORT = (20000, 60000)
rng = random.Random(job_id)
return rng.randint(MIN_MASTER_PORT, MAX_MASTER_PORT)
@lru_cache()
def get_master_addr() -> str:
if get_is_torch_run():
return os.environ["MASTER_ADDR"]
elif get_is_slurm_job():
hostnames = subprocess.check_output(
["scontrol", "show", "hostnames", os.environ["SLURM_JOB_NODELIST"]]
)
return hostnames.split()[0].decode("utf-8")
else:
return "127.0.0.1"
def setup_env(env_args: EnvironmentArgs):
env_vars = env_args.model_dump()
# When using Triton, it attempts to locate prebuilt kernels in a cache
# located at ~/.triton/cache, but when that's backed by NFS this can fail
# with a "OSError: [Errno 116] Stale file handle" error. If we were to set
# it to a local directory it would belong to the first user who created it
# and it would fail for the job of any other successive user assigned to
# that machine. To avoid all this mess we use a temporary per-process cache.
triton_cache_dir = tempfile.mkdtemp()
atexit.register(shutil.rmtree, triton_cache_dir, ignore_errors=True)
env_vars["TRITON_CACHE_DIR"] = triton_cache_dir
# We change the tmp dir to /scratch in case it's slurm job
# This avoids filling up the host's usually limited tmpfs
# A full tmpfs leads to very slow creation of processes and weird bugs
if get_is_slurm_job():
new_tmp = f"/scratch/slurm_tmpdir/{os.environ['SLURM_JOB_ID']}"
if os.path.exists(new_tmp):
env_vars["TMP_DIR"] = new_tmp
for name, value in env_vars.items():
if os.environ.get(name) != str(value):
os.environ[name] = str(value)
logger.warning(f"WARNING: Setting {name} to {value}")
def setup_torch_distributed(dist_args: DistributedArgs):
"""
Handle single and multi-GPU / multi-node / SLURM jobs.
Initialize the following variables:
- global_rank
- world_size
"""
mp.set_start_method(dist_args.spawn_method, force=True)
with mp.Manager():
pass
local_rank = get_local_rank()
os.environ["RANK"] = str(get_global_rank())
os.environ["WORLD_SIZE"] = str(get_world_size())
os.environ["MASTER_ADDR"] = get_master_addr()
os.environ["MASTER_PORT"] = str(
get_master_port(job_id=int(os.environ.get("SLURM_JOB_ID", -1)))
)
if get_is_torch_run():
logger.info(f"Run launched with torchrun, local rank: {local_rank}")
elif get_is_slurm_job():
logger.info(f"Run launched with slurm, local rank: {local_rank}")
else:
logger.info("Single GPU job")
logger.info(f"ENV: {os.environ}")
# set GPU device
assert 0 <= local_rank < 8
if dist_args.matmul_allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
logger.warning(
f"WARNING: Setting torch.backends.matmul.allow_tf32 to True. This is faster but less accurate."
)
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = (
dist_args.allow_bf16_reduced_precision_reduction
)
if torch.cuda.device_count() > 1:
torch.cuda.set_device(local_rank)
torch.distributed.init_process_group(init_method="env://", backend="nccl")
torch.autograd.set_detect_anomaly(dist_args.detect_anomaly)
def get_module(module, access_string):
names = access_string.split(sep=".")
return reduce(getattr, names, module)
def set_module(module, access_string, value):
names = access_string.split(sep=".")
parent = reduce(getattr, names[:-1], module)
setattr(parent, names[-1], value)
def default_fsdp_grouping_plan(n_layers: int) -> List[Tuple[str, bool]]:
return [(f"layers.{i}", i < n_layers - 1) for i in range(n_layers)]
def get_default_policy(no_recompute_ops=None):
no_recompute_ops = no_recompute_ops or default_no_recompute_ops
def default_policy(ctx, func, *args, **kwargs):
return (
CheckpointPolicy.MUST_SAVE
if func in no_recompute_ops
else CheckpointPolicy.PREFER_RECOMPUTE
)
return default_policy
@torch.no_grad()
def check_model_value_range(
model: torch.nn.Module, range: float = 1e3, std: float = 1e3
):
for name, param in chain(model.named_parameters(), model.named_buffers()):
if isinstance(param, DTensor):
param = param.to_local()
if param.numel() == 0:
logger.warning(
f"Model parameter {name} is empty, probably because of FSDP sharding"
)
continue
if torch.isnan(param).any() or torch.isinf(param).any():
logger.warning(f"Model parameter {name} contains NaN or Inf")
param_range = param.max() - param.min()
param_std = param.std()
if param_range > range:
logger.warning(
f"Model parameter {name} has a suspiciously large range ({param_range}): please check initialization and init_weights is defined and called"
)
if param_std > std:
logger.warning(
f"Model parameter {name} has a suspiciously large standard deviation ({param_std}): please check initialization and init_weights is defined and called"
)
if (param == 0).all():
logger.warning(
f"Model parameter {name} is all zeros: it might be because of a missing initialization"
)
def init_signal_handler(callable):
"""
Handle signals sent by SLURM for time limit / pre-emption.
"""
signal.signal(signal.SIGUSR2, callable)
logger.warning("Signal handler installed.")
def requeue_slurm_job():
prod_id = int(os.environ["SLURM_PROCID"])
logger.warning("Host: %s - Global rank: %i" % (socket.gethostname(), prod_id))
if prod_id == 0 and os.environ.get("LAUNCH_WITH", "") != "DORA":
logger.warning("Requeuing job " + os.environ["SLURM_JOB_ID"])
os.system("scontrol requeue " + os.environ["SLURM_JOB_ID"])
else:
logger.warning("Not the master process, no need to requeue.")
sys.exit(0)
@contextlib.contextmanager
def clean_env():
distrib_names = (
"MASTER_ADDR",
"MASTER_PORT",
"RANK",
"WORLD_SIZE",
"LOCAL_RANK",
"LOCAL_WORLD_SIZE",
"TORCHELASTIC_RUN_ID",
"DORA_FORCE_DISTRIB",
)
cluster_env = {
x: os.environ.pop(x)
for x in os.environ
if x.startswith(
("SLURM_", "SLURMD_", "SRUN_", "SBATCH_", "SUBMITIT_", "WANDB_")
)
or x in distrib_names
}
try:
yield
finally:
os.environ.update(cluster_env)
def parallelize_model(
model: torch.nn.Module,
device_mesh,
model_args,
distributed_args: DistributedArgs,
fsdp_grouping_plan: Optional[List[Tuple[str, bool]]] = None,
tp_parallelize=None,
no_recompute_ops=None,
) -> torch.nn.Module:
if distributed_args.tp_size > 1:
assert (
distributed_args.fsdp_type == "full_shard"
), "Only full shard is supported for TP parallelism"
assert tp_parallelize is not None, "TP plan is required for TP parallelism"
assert (
distributed_args.compile == False
), "Compile is not supported for TP parallelism"
tp_parallelize(model, device_mesh["tp"], model_args, distributed_args)
if distributed_args.float8_recipe is not None:
if distributed_args.tp_size > 1:
raise RuntimeError("float8 is incompatible with tensor-parallelism for now")
model = convert_linears_to_fp8(
model, distributed_args.float8_recipe, distributed_args.float8_filter
)
param_dtype = dict(fp32=torch.float32, fp16=torch.float16, bf16=torch.bfloat16)[
distributed_args.model_dtype
]
if (
distributed_args.fsdp_type == "full_shard"
or distributed_args.fsdp_type == "no_shard"
):
if distributed_args.fsdp_type == "no_shard":
assert (
distributed_args.dp_shard == 1
), "dp_shard must be 1 for no_shard fsdp_type"
assert (
device_mesh["dp_shard"].size() == 1
), "dp_shard must be 1 for no_shard fsdp_type"
fsdp_config = dict(
mp_policy=(
MixedPrecisionPolicy(
param_dtype=param_dtype,
reduce_dtype=torch.float32,
)
),
mesh=(
device_mesh["dp_replicate", "dp_shard"]
if distributed_args.dp_shard > 1
or distributed_args.fsdp_type == "no_shard"
else device_mesh["dp_replicate"]
),
)
if fsdp_grouping_plan is None:
# Assume that the model has list of layers and group around it
fsdp_grouping_plan = default_fsdp_grouping_plan(len(model.layers))
for path, reshard_after_forward in fsdp_grouping_plan:
module = get_module(model, path)
set_module(
model,
path,
fully_shard(
module, **fsdp_config, reshard_after_forward=reshard_after_forward
),
)
model = fully_shard(model, **fsdp_config, reshard_after_forward=True)
else:
raise ValueError(f"Invalid fsdp_type: {distributed_args.fsdp_type}")
if distributed_args.selective_activation_checkpointing:
# only works for blt models
# assuming that entropy models will not use checkpointing
for module in [
model.global_transformer,
model.local_encoder,
model.local_decoder,
]:
for i in range(len(module.layers)):
module.layers[i] = checkpoint_wrapper(
module.layers[i],
)
if distributed_args.compile:
torch._dynamo.config.cache_size_limit = (
distributed_args.compile_cache_size_limit
)
model = torch.compile(model)
return model
|