Spaces:
Running
Running
File size: 12,534 Bytes
bcc039b b79eb3e bcc039b 936d943 bcc039b 936d943 bcc039b ea1fc75 aeb95f1 bcc039b aeb95f1 bcc039b 6ffeb66 bcc039b 936d943 bcc039b fc3399e b0120da 936d943 bcc039b b0120da 936d943 b0120da bcc039b fc3399e bcc039b b0120da bcc039b 7044771 bcc039b b0120da bcc039b ea1fc75 bcc039b 63913e4 bcc039b fc3399e bcc039b 7622d28 bcc039b fc3399e bcc039b b0120da bcc039b 7622d28 bcc039b 7622d28 bcc039b 7622d28 bcc039b aeb95f1 bcc039b a809259 ea1fc75 a809259 bcc039b 7044771 fc3399e 7044771 19a3f75 7044771 083656c 7044771 fc3399e b79eb3e 7044771 7517ac2 b79eb3e 7517ac2 7044771 b79eb3e 7044771 bcc039b 6ffeb66 bcc039b 7044771 bcc039b 7622d28 6ffeb66 bcc039b 7044771 bcc039b afedb16 bcc039b afedb16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
import logging
import os
from typing import Any
import numpy as np
import yaml
from pydantic import BaseModel, ConfigDict
from bytelatent.checkpoint import CONSOLIDATE_FOLDER, CheckpointArgs
from bytelatent.data.data_types import Batch
from bytelatent.data.file_util import get_fs
from bytelatent.data.iterators.abstract_iterator import StatefulIterator
from bytelatent.data.iterators.arrow_iterator import ArrowFileIterator
from bytelatent.data.iterators.looping_iterator import LoopingIterator
from bytelatent.data.iterators.multiprocess_iterator import (
MultiprocessIterator,
PersistType,
)
from bytelatent.data.iterators.packing_iterator import (
PackingArgs,
PackingIterator,
PackingMode,
)
from bytelatent.data.iterators.preprocess_iterator import PreprocessIterator
from bytelatent.data.iterators.sampling_iterator import SamplingIterator
from bytelatent.data.iterators.sequence_iterator import (
SequenceIterator,
SequencePackingArgs,
)
from bytelatent.data.patcher import PatcherArgs, PatchingModeEnum
from bytelatent.distributed import DistributedArgs, EnvironmentArgs
from bytelatent.metrics import LoggingArgs
from bytelatent.model.blt import ByteLatentTransformerArgs
from bytelatent.optim import OptimArgs
from bytelatent.profiling import ProfilerArgs
from bytelatent.tokenizers.build_tokenizer import TokenizerArgs
from bytelatent.transformer import LMTransformerArgs
logger = logging.getLogger()
def get_rng_state(seed: int, rank: int, world_size: int) -> dict[str, Any]:
return np.random.default_rng((seed, rank, world_size)).bit_generator.state
TRAIN_DATA_FILE_PATTERN = "*.chunk.*.jsonl"
def find_and_sanitize_chunks(
dataset_path: str,
world_size: int,
file_pattern: str,
s3_profile: str | None = None,
):
fs = get_fs(dataset_path, s3_profile=s3_profile)
path_with_glob = os.path.join(dataset_path, file_pattern)
dataset_chunks = fs.glob(path_with_glob)
n_chunks = len(dataset_chunks)
if n_chunks > world_size:
n_discard = n_chunks - world_size
dataset_chunks = dataset_chunks[:world_size]
else:
assert (
world_size % n_chunks == 0
), "World size should be a multiple of number of chunks"
assert n_chunks > 0, f"No valid chunks in {dataset_path}"
return dataset_chunks
def distribute_data_to_rank(
*,
dataset_path: str,
preprocess_dir: str,
entropy_model_name: str | None,
arrow_batch_size: int,
rank: int,
world_size: int,
file_format: str,
s3_profile: str | None = None,
file_pattern: str = TRAIN_DATA_FILE_PATTERN,
) -> ArrowFileIterator:
dataset_chunks = find_and_sanitize_chunks(
dataset_path, world_size, file_pattern, s3_profile=s3_profile
)
n_workers_per_chunk = world_size // len(dataset_chunks)
rank_to_arrow_iterator_params = []
for chunk_path in dataset_chunks:
for worker_id in range(n_workers_per_chunk):
rank_to_arrow_iterator_params.append(
ArrowFileIterator(
file_path=chunk_path,
file_format=file_format,
worker_id=worker_id,
num_workers=n_workers_per_chunk,
preprocess_dir=preprocess_dir,
dataset_files=None,
entropy_model_name=entropy_model_name,
arrow_batch_size=arrow_batch_size,
s3_profile=s3_profile,
)
)
return rank_to_arrow_iterator_params[rank]
class PackedCausalTransformerGeneratorArgs(BaseModel):
model_config = ConfigDict(extra="forbid")
temperature: float = 0.0
top_p: float | None = None
top_k: float | None = None
max_gen_len: int = 512 # Maximum number of tokens to generate
max_tokens: int = 1024 # Maximum number of tokens that can go through the model
max_prompt_len: int | None = None
until: list[str] = []
compile_prefilling: bool = False
reduce_generation_overhead: bool = False
show_progress: bool = False
dtype: str | None = "bf16"
device: str | None = "cuda"
class DataloaderArgs(BaseModel):
model_config = ConfigDict(extra="forbid")
s3_profile: str | None = None
root_dir: str | None = None
sources: dict[str, float] = {}
batch_size: int = 2
seq_len: int = 2048
seed: int = 42
add_bos: bool = True
add_eos: bool = True
load_async: bool = True
async_persist_type: PersistType = PersistType.EXACT
prefetch_size: int = 64
preprocess_dir: str | None = None
dataset_files: list[str] | None = None
entropy_model_name: str | None = "transformer_100m"
# Be very careful with increasing, increases memory usage by that factor per rank, per data source
arrow_batch_size: int = 20
buffer_size: int = 64
file_format: str = "arrow"
pad_to_max_length: bool = True
max_encoder_seq_length: int = 12288
enable_byte_ngrams: bool = False
add_patches: bool = True
tokenizer_args: TokenizerArgs = TokenizerArgs()
patcher_args: PatcherArgs = PatcherArgs()
def _create_sequence_iterators(
self, rank: int, world_size: int
) -> dict[str, SequenceIterator]:
sequence_packing_args = SequencePackingArgs(
output_seq_len=self.seq_len,
buffer_size=self.buffer_size,
)
source_to_sequence_iterator: dict[str, SequenceIterator] = {}
for dataset_path in self.sources:
shuffle_rng_state = get_rng_state(self.seed + 1, rank, world_size)
arrow_iterator = distribute_data_to_rank(
file_format=self.file_format,
dataset_path=os.path.join(self.root_dir, dataset_path),
preprocess_dir=self.preprocess_dir,
entropy_model_name=self.entropy_model_name,
arrow_batch_size=self.arrow_batch_size,
rank=rank,
world_size=world_size,
s3_profile=self.s3_profile,
)
looping_iterator = LoopingIterator(arrow_iterator)
preprocess_iterator = PreprocessIterator(
looping_iterator,
patcher_args=self.patcher_args,
tokenizer_args=self.tokenizer_args,
add_patches=self.add_patches,
)
sequence_iterator = SequenceIterator(
preprocess_iterator,
sequence_packing_args=sequence_packing_args,
rng_state=shuffle_rng_state,
)
source_to_sequence_iterator[dataset_path] = sequence_iterator
return source_to_sequence_iterator
def build_from_rank(
self, rank: int, world_size: int
) -> StatefulIterator[Batch, Any]:
source_to_sequence_iterators = self._create_sequence_iterators(rank, world_size)
weight_rng_state = get_rng_state(self.seed + 1, rank, world_size)
sampling_iterator = SamplingIterator(
rng_state=weight_rng_state,
source_to_weight=self.sources,
source_to_iterator=source_to_sequence_iterators,
)
tokenizer = self.tokenizer_args.build()
if self.tokenizer_args.name == "bytes":
# TODO: Check this with Artidoro
pad_id = 0
else:
pad_id = tokenizer.boe_id
packing_args = PackingArgs(
batch_size=self.batch_size,
seq_len=self.seq_len,
pad_id=pad_id,
max_length=self.max_encoder_seq_length,
pad_to_max_length=self.pad_to_max_length,
enable_byte_ngrams=self.enable_byte_ngrams,
packing_mode=(
PackingMode.BYTES
if self.patcher_args.patching_mode == PatchingModeEnum.byte
else PackingMode.PATCHING
),
)
packing_iterator = PackingIterator(sampling_iterator, packing_args=packing_args)
if self.load_async:
mp_iterator = MultiprocessIterator(
packing_iterator,
n_batches_to_prefetch=self.prefetch_size,
persist_type=self.async_persist_type,
)
return mp_iterator
else:
return packing_iterator
class LMHarnessArgs(BaseModel):
model_config = ConfigDict(extra="forbid")
tasks: list[Any] | None = None
num_fewshot: int | None = None
device: str | None = None
use_cache: str | None = None
cache_requests: bool = False
rewrite_requests_cache: bool = False
delete_requests_cache: bool = False
limit: int | float | None = None
bootstrap_iters: int = 100000
check_integrity: bool = False
write_out: bool = False
log_samples: bool = True
system_instruction: str | None = None
apply_chat_template: bool | str = False
fewshot_as_multiturn: bool = False
gen_kwargs: str | None = None
verbosity: str = "INFO"
predict_only: bool = False
random_seed: int = 0
numpy_random_seed: int = 1234
torch_random_seed: int = 1234
fewshot_random_seed: int = 1234
class ValidationArgs(BaseModel):
model_config = ConfigDict(extra="forbid")
max_n_docs: int | None = (
None # If None the whole validation file is used -> /!\ This number of steps is gpu dependent (100 max steps on 8 gpus = 800 steps on 1 gpu)
)
max_n_batches: int | None = (
None # If None the whole validation file is used -> /!\ This number of steps is gpu dependent (100 max steps on 8 gpus = 800 steps on 1 gpu)
)
use_val_from_train_src: bool = True # Use the validation set from training sources
root_dir: str = ""
sources: list[str] = [] # Other sources to eval on
batch_size: int = 8
class EvalArgs(BaseModel):
model_config = ConfigDict(extra="forbid")
dump_dir: str | None = None
ckpt_dir: str | None = None
entropy_ckpt_dir: str | None = None
metric_log_dir: str | None = None
prompts: list[str] | None = None
run_ppl: bool = True
run_tasks: bool = False
generator: PackedCausalTransformerGeneratorArgs = (
PackedCausalTransformerGeneratorArgs()
)
harness: LMHarnessArgs | None = LMHarnessArgs()
validation: ValidationArgs | None = ValidationArgs()
global_step: int | None = None # for in-training evaluation
s3_profile: str | None = None
consolidate_if_needed: bool = False
consolidate_folder: str = CONSOLIDATE_FOLDER
class TrainArgs(BaseModel):
model_config = ConfigDict(extra="forbid")
name: str = "lingua"
dump_dir: str = ""
seed: int = 42
debug_dynamo: bool = False
# Number of gradient accumulation steps
# Total batch size is batch_size*grad_acc_steps
grad_acc_steps: int = 1
gc_collect_freq: int = 1000
probe_freq: int | None = None
# Nb optimizer steps to take
steps: int = 1000
# If not None, halt training after this many steps,
# useful for debugging
max_steps: int | None = None
data: DataloaderArgs = DataloaderArgs()
optim: OptimArgs = OptimArgs()
model: ByteLatentTransformerArgs | None = ByteLatentTransformerArgs()
# This is only needed for training the entropy model
entropy_model: LMTransformerArgs | None = None
# Instead of training main model, train entropy model
train_entropy_model: bool = False
distributed: DistributedArgs = DistributedArgs()
env: EnvironmentArgs = EnvironmentArgs()
checkpoint: CheckpointArgs = CheckpointArgs()
profiling: ProfilerArgs = ProfilerArgs()
logging: LoggingArgs = LoggingArgs()
# If set to None, eval is run locally otherwise it launches a new job with the given number of gpus
async_eval_gpus: int | None = None
eval: EvalArgs | None = None
eval_on_gpus: int | None = None
def dump_to_yaml_file(
self, path: str, log_config: bool = True, sort_keys: bool = True
):
yaml_str = self.dump_to_yaml_str(sort_keys=sort_keys)
with open(path, "w") as f:
if log_config:
logger.info("Using the following config for this run:")
logger.info(yaml_str)
f.write(yaml_str)
def dump_to_yaml_str(self, sort_keys: bool = True):
model_dict = self.model_dump(mode="json")
yaml_str = yaml.dump(
model_dict,
allow_unicode=True,
sort_keys=sort_keys,
default_flow_style=False,
)
return yaml_str
|