lorocksUMD's picture
Upload 32 files
67b4506 verified
import glob
import os
from abc import ABC, abstractmethod
from glob import glob
from os.path import join
from pathlib import Path
from typing import List, Set
import audioread
import numpy as np
import pandas as pd
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
import torchaudio
import torchvision.transforms as T
from PIL import Image
from torch.utils.data import Dataset, DataLoader, default_collate, Subset, ConcatDataset
from tqdm import tqdm
from DenseAV.denseav.constants import AUDIO_MASK, AUDIO_POS_MASK, IMAGE_MASK, IMAGE_INPUT
from DenseAV.denseav.data.make_tarballs import untar_all
from DenseAV.denseav.shared import norm, prep_waveform
def sample_choice(choices, probs):
# Check that probabilities sum to 1 and are non-negative
assert sum(probs) == 1, "Probabilities must sum to 1"
assert all(p >= 0 for p in probs), "Probabilities cannot be negative"
# Convert probs to a tensor
probs_tensor = torch.tensor(probs)
# Sample a choice according to the probabilities
index = torch.multinomial(probs_tensor, 1).item()
# Return the sampled choice
return choices[index]
def grid_frames(frames):
top_row = torch.cat([frames[0], frames[1]], dim=2)
bottom_row = torch.cat([frames[2], frames[3]], dim=2)
return torch.cat([top_row, bottom_row], dim=3)
def create_mixed_image(pos_frame, neg_frame, patch_size):
# Step 1: Check that patch_size evenly divides the image dimensions
b, c, h, w = pos_frame.shape
assert h % patch_size == 0 and w % patch_size == 0, "Patch size must evenly divide image dimensions"
# Step 2: Create a random binary mask with the same number of patches as the image
mask = torch.randint(0, 2, (b, 1, h // patch_size, w // patch_size))
# Step 3: Create a new image using patches from pos_frame and neg_frame according to the mask
# Upscale the mask to the size of the image
mask_upscaled = F.interpolate(mask.to(torch.float32), scale_factor=patch_size)
# Use the mask to create a mixed frame
mixed_frame = mask_upscaled * pos_frame + (1 - mask_upscaled) * neg_frame
return mixed_frame, mask_upscaled
class AVDataset(ABC, Dataset):
@abstractmethod
def _dataset_folder(self) -> str:
pass
@abstractmethod
def _load_info(self, split) -> pd.DataFrame:
"""
This function should return a dataframe with at least a column "id"
@return:
"""
pass
@abstractmethod
def _missing_threshold(self) -> float:
pass
@abstractmethod
def default_target_length(self) -> int:
pass
def target_length(self):
if self.override_target_length is not None:
return self.override_target_length
else:
return self.default_target_length()
def _frame_root(self) -> str:
return join(self.root, "frames", self.split)
def _video_root(self) -> str:
return join(self.root, "videos", self.split)
def _audio_root(self) -> str:
return join(self.root, "audio", self.split)
def _semseg_root(self) -> str:
return join(self.root, "annotations", self.split)
def _embed_root(self) -> str:
return join(self.root, "embedding", self.audio_embed_model, self.split)
def _label_root(self) -> str:
return join(self.root, "pseudo-labels")
def _hn_root(self) -> str:
return join(self.root, "hard_negatives")
def _all_video_files(self) -> Set[str]:
return set(str(p) for p in Path(join(self._video_root())).rglob('*'))
def _all_frame_files(self) -> Set[str]:
return set(str(p) for p in Path(join(self._frame_root())).rglob('*'))
def _all_audio_files(self) -> Set[str]:
return set(str(p) for p in Path(join(self._audio_root())).rglob('*'))
def _all_embed_files(self) -> Set[str]:
return set(str(p) for p in Path(join(self._embed_root())).rglob('*'))
def _get_frame_files(self, row) -> List[str]:
return [self._frame_root() + "/" + row["id"] + f"_{i}.jpg" for i in range(self._expected_num_frames())]
def _get_semseg_file(self, row) -> str:
raise NotImplementedError("Class has not implemented _get_semseg_files")
def _get_audio_file(self, row) -> str:
return self._audio_root() + "/" + row["id"] + ".mp3"
def _get_video_file(self, row) -> str:
return self._video_root() + "/" + row["id"] + ".mp4"
def _get_embed_file(self, row) -> str:
return self._embed_root() + "/" + row["id"] + ".npz"
def _add_files_to_metadata(self, df) -> pd.DataFrame:
tqdm.pandas()
if self.use_audio_embed:
df["embed_file"] = df.progress_apply(self._get_embed_file, axis=1)
if self.use_audio or self.use_spec:
df["audio_file"] = df.progress_apply(self._get_audio_file, axis=1)
if self.use_frames:
df["frame_files"] = df.progress_apply(self._get_frame_files, axis=1)
if self.use_semseg:
df["semseg_file"] = df.progress_apply(self._get_semseg_file, axis=1)
df = self._filter_valid_metadata(df)
if self.use_hn:
loaded = np.load(join(self._hn_root(), "original", f"{self.split}_hard_negatives.npz"))
df["hn0"] = [t for t in torch.tensor(loaded["indices_0"])]
df["hn1"] = [t for t in torch.tensor(loaded["indices_1"])]
return df
def _split_name(self, split):
return split
def _filter_valid_metadata(self, df: pd.DataFrame) -> pd.DataFrame:
print("MY_DIR ", list(glob(join(self.root, "*"))))
if self.use_audio_embed:
missing_embed_files = set(df['embed_file']) - self.all_embed_files
valid_audio = ~df['embed_file'].isin(missing_embed_files)
print("ALL EMBED ", len(self.all_embed_files))
elif self.use_audio or self.use_spec:
missing_audio_files = set(df['audio_file']) - self.all_audio_files
valid_audio = ~df['audio_file'].isin(missing_audio_files)
print("ALL AUDIO ", len(self.all_audio_files))
if self.use_frames:
missing_frame_files = set(
item for sublist in df['frame_files'].tolist() for item in sublist) - self.all_frame_files
valid_frames = df['frame_files'].apply(lambda x: not any(file in missing_frame_files for file in x))
print("ALL FRAMES ", len(self.all_frame_files))
df["is_valid"] = valid_audio & valid_frames
else:
df["is_valid"] = valid_audio
percent_missing = (1 - (df["is_valid"].sum() / len(df)))
assert percent_missing <= self._missing_threshold(), \
f"Too many missing files: %{round(percent_missing * 100.0, 2)}"
assert len(df) > 0, "No files found"
return df[df["is_valid"]]
def __init__(
self,
root: str,
split: str = "train",
use_frames=False,
frame_transform=None,
use_audio=False,
use_spec=False,
use_audio_embed=False,
use_hn=False,
use_caption=False,
use_semseg=False,
neg_audio=False,
use_davenet_spec=False,
use_fnac_spec=False,
n_label_frames=196,
label_transform=None,
audio_embed_model="hubert",
n_frames=1,
audio_transform=None,
audio_aug=False,
spec_transform=None,
spec_mel_bins=128,
spec_mean=-6.6268077,
spec_std=5.358466,
sample_rate=16000,
override_target_length=None,
use_tags=False,
extra_audio_masking=False,
audio_level=False,
quad_mixup=0.0,
bg_mixup=0.0,
patch_mixup=0.0,
patch_size=8,
):
super(AVDataset).__init__()
self.pytorch_data_dir = root
self.split = self._split_name(split)
self.root = join(root, self._dataset_folder())
self.use_frames = use_frames
self.frame_transform = frame_transform
self.use_audio = use_audio
self.use_spec = use_spec
self.use_audio_embed = use_audio_embed
self.use_davenet_spec = use_davenet_spec
self.use_fnac_spec = use_fnac_spec
self.use_hn = use_hn
self.use_caption = use_caption
self.label_transform = label_transform
self.audio_embed_model = audio_embed_model
self.audio_aug = audio_aug
self.n_frames = n_frames
self.audio_transform = audio_transform
self.spec_transform = spec_transform
self.spec_mel_bins = spec_mel_bins
self.spec_mean = spec_mean
self.spec_std = spec_std
self.use_semseg = use_semseg
self.override_target_length = override_target_length
self.use_tags = use_tags
self.extra_audio_masking = extra_audio_masking
self.neg_audio = neg_audio
self.audio_level = audio_level
self.quad_mixup = quad_mixup
self.bg_mixup = bg_mixup
self.patch_mixup = patch_mixup
self.patch_size = patch_size
self.sample_rate = sample_rate
self.n_label_frames = n_label_frames
if self.use_audio_embed:
self.all_embed_files = self._all_embed_files()
if self.use_audio or self.use_spec:
self.all_audio_files = self._all_audio_files()
if self.use_frames:
self.all_frame_files = self._all_frame_files()
self.metadata = self._add_files_to_metadata(self._load_info(self.split))
assert len(self.metadata) > 0
def __len__(self):
return len(self.metadata)
@abstractmethod
def _expected_num_frames(self) -> int:
pass
def get_audio_mask(self, real_length, padded_length, target_size):
if not isinstance(real_length, torch.Tensor):
real_length = torch.tensor(real_length)
padded_length = torch.tensor(padded_length)
n_frames = ((real_length / padded_length) * target_size).to(torch.int64)
oh = F.one_hot(n_frames, num_classes=target_size + 1)
if len(oh.shape) == 1:
oh = oh.unsqueeze(0)
return (1 - torch.cumsum(oh, dim=1))[:, :-1].to(torch.bool)
def _base_get_item(self, item):
id = self.metadata["id"].iloc[item]
data_dict = {"metadata": {"id": id, "index": item}}
if self.use_tags and "tags" in self.metadata:
tags = torch.tensor(self.metadata["tags"].iloc[item])
tag_oh = torch.zeros(self.num_tags, dtype=torch.float32)
tag_oh[tags] += 1
data_dict["tags"] = tag_oh
if self.use_audio or self.use_spec:
audio_file = self.metadata["audio_file"].iloc[item]
data_dict["metadata"]["audio_file"] = audio_file
loaded_waveform, obs_sr = torchaudio.load(audio_file)
loaded_waveform = loaded_waveform[0]
if self.neg_audio:
neg_audio_file = self.metadata["audio_file"].iloc[torch.randint(0, len(self), size=(1,)).item()]
data_dict["metadata"]["neg_audio_file"] = neg_audio_file
neg_waveform, neg_obs_sr = torchaudio.load(neg_audio_file)
neg_waveform = neg_waveform[0]
else:
neg_waveform, neg_obs_sr = None, None
(waveform,
spectrogram,
audio_length,
total_length,
original_length,
mask,
pos_mask) = prep_waveform(
loaded_waveform,
obs_sr,
self.target_length(),
self.spec_mel_bins,
self.spec_mean,
self.spec_std,
self.sample_rate,
self.use_spec,
False,
self.extra_audio_masking,
neg_waveform,
neg_obs_sr,
self.audio_level,
self.audio_aug
)
if self.spec_transform is not None and spectrogram is not None:
spectrogram = self.spec_transform(spectrogram)
if self.audio_transform is not None:
waveform = self.audio_transform(waveform)
data_dict["audio"] = waveform
data_dict[AUDIO_MASK] = mask
data_dict[AUDIO_POS_MASK] = pos_mask
data_dict["audio_length"] = audio_length
data_dict["original_length"] = original_length
data_dict["total_length"] = total_length
if spectrogram is not None:
data_dict["spec"] = spectrogram
if mask.mean() < .04:
return None
if self.use_davenet_spec:
from data.DavenetUtilities import davenet_load_audio
audio_file = self.metadata["audio_file"].iloc[item]
spec, n_frames = davenet_load_audio(audio_file)
data_dict["davenet_spec"] = spec
if self.use_fnac_spec:
from featurizers.FNACAVL import load_spectrogram as fnac_load_spectrogram
audio_file = self.metadata["audio_file"].iloc[item]
data_dict["fnac_spec"] = fnac_load_spectrogram(audio_file, 3)
if self.use_audio_embed:
loaded = np.load(self.metadata["embed_file"].iloc[item])
data_dict["audio_emb"] = loaded["feat"]
data_dict["audio_length"] = loaded["audio_length"]
data_dict["total_length"] = loaded["total_length"]
data_dict["original_length"] = loaded["original_length"]
data_dict[AUDIO_MASK] = self.get_audio_mask(
data_dict["audio_length"],
data_dict["total_length"],
data_dict["audio_emb"].shape[-1]) \
.squeeze().to(torch.float32)
data_dict[AUDIO_POS_MASK] = data_dict[AUDIO_MASK].to(torch.float32)
if self.use_frames:
def get_frames(item):
file_group = self.metadata["frame_files"].iloc[item]
if self.n_frames is not None:
selected_frames = torch.randperm(len(file_group))[:self.n_frames]
file_group = [file_group[i] for i in selected_frames]
data_dict["metadata"]["frame_files"] = file_group
images = [Image.open(file).convert("RGB") for file in file_group]
if self.frame_transform is not None:
images = torch.cat([self.frame_transform(img).unsqueeze(0) for img in images], dim=0)
return images, file_group
no_mixup = 1.0 - (self.bg_mixup + self.quad_mixup + self.patch_mixup)
mixup_type = sample_choice(
["quad", "bg", "patch", None],
[self.quad_mixup, self.bg_mixup, self.patch_mixup, no_mixup]
)
if mixup_type == "quad":
indices = [item] + torch.randint(0, len(self), size=(3,)).numpy().tolist()
frames_and_files = [get_frames(i) for i in indices]
file_group = frames_and_files[0][1]
perm = torch.randperm(4)
all_frames = [F.interpolate(frames_and_files[i][0], scale_factor=0.5, mode="bilinear") for i in
perm]
b, c, h, w = all_frames[0].shape
indices = [indices[p] for p in perm]
masks = [(torch.ones(b, 1, h, w) if index == item else torch.zeros(b, 1, h, w)) for index in
indices]
data_dict[IMAGE_INPUT] = grid_frames(all_frames)
data_dict[IMAGE_MASK] = grid_frames(masks)
elif mixup_type == "bg":
neg_item = torch.randint(0, len(self), size=(1,)).item()
neg_frame, _ = get_frames(neg_item)
pos_frame, file_group = get_frames(item)
b, c, h, w = neg_frame.shape
neg_mask = torch.zeros(b, 1, h, w)
pos_mask = torch.ones(b, 1, h, w)
if torch.rand(1).item() > 0.5:
bg_frame = neg_frame
bg_mask = neg_mask
fg_frame = F.interpolate(pos_frame, scale_factor=0.5, mode="bilinear")
fg_mask = F.interpolate(pos_mask, scale_factor=0.5, mode="bilinear")
else:
bg_frame = pos_frame
bg_mask = pos_mask
fg_frame = F.interpolate(neg_frame, scale_factor=0.5, mode="bilinear")
fg_mask = F.interpolate(neg_mask, scale_factor=0.5, mode="bilinear")
start_h = torch.randint(0, h // 2, size=(1,))
start_w = torch.randint(0, w // 2, size=(1,))
bg_frame[:, :, start_h:start_h + fg_frame.shape[2], start_w:start_w + fg_frame.shape[3]] = fg_frame
bg_mask[:, :, start_h:start_h + fg_frame.shape[2], start_w:start_w + fg_frame.shape[3]] = fg_mask
data_dict["frames"] = bg_frame
data_dict["image_masks"] = bg_mask
elif mixup_type == "patch":
neg_item = torch.randint(0, len(self), size=(1,)).item()
neg_frame, _ = get_frames(neg_item)
pos_frame, file_group = get_frames(item)
frames, masks = create_mixed_image(pos_frame, neg_frame, self.patch_size)
data_dict["frames"] = frames
data_dict["image_masks"] = masks
elif mixup_type is None:
frames, file_group = get_frames(item)
data_dict["frames"] = frames
b, c, h, w = frames.shape
data_dict["image_masks"] = torch.ones(b, 1, h, w)
else:
raise ValueError(f"Unknown mixup type {mixup_type}")
if "original_length" in data_dict:
if self._expected_num_frames() == 1:
frame_nums = torch.tensor([0])
else:
frame_nums = torch.tensor([
int(f.split("/")[-1].split("_")[-1].split(".")[0]) for f in file_group])
data_dict["frame_nums"] = frame_nums
frame_fracs = ((frame_nums + .5) / (self._expected_num_frames()))
frame_position = (frame_fracs * data_dict["original_length"]) / data_dict["total_length"]
data_dict["frame_position"] = frame_position
if self.use_caption:
if "word" in self.metadata:
words = self.metadata["word"].iloc[item]
start = self.metadata["start"].iloc[item]
end = self.metadata["end"].iloc[item]
if isinstance(words, float):
words = [""]
start = [0.0]
end = [-1.0]
data_dict["caption"] = {
"words": words,
"start": start,
"end": end,
}
if "text" in self.metadata:
data_dict["text"] = self.metadata["text"].iloc[item]
if self.use_semseg:
semseg_path = join(self._semseg_root(), self.metadata["semseg_file"].iloc[item])
semseg = Image.open(semseg_path)
if self.label_transform is not None:
semseg = np.array(self.label_transform(semseg))
data_dict["semseg"] = semseg
data_dict["metadata"]["semseg_file"] = semseg_path
# if hasattr(self, "num_classes"):
# data_dict["num_pixels_per_class"] = F.one_hot(
# torch.tensor(semseg).to(torch.int64), self.num_classes() + 1).sum(dim=[0, 1])
return data_dict
def __getitem__(self, item):
try:
data_dict = self._base_get_item(item)
if self.use_hn:
indices = torch.cat([self.metadata["hn0"].iloc[item], self.metadata["hn1"].iloc[item]], dim=0)
neg_index = indices[torch.randint(0, indices.shape[0], (1,))]
negative_dict = self._base_get_item(neg_index)
data_dict["negatives"] = negative_dict
return data_dict
except (audioread.exceptions.NoBackendError, EOFError) as e:
# raise e
bad_path = self.metadata["audio_file"].iloc[item]
print(e)
print(f"Removing bad audio file {bad_path}")
# os.remove(bad_path)
return None
except ValueError as e:
# raise e
bad_path = self.metadata["audio_file"].iloc[item]
if "Input signal length=0" in str(e):
print(e)
print(f"Removing bad file {bad_path} due to input signal length=0")
# os.remove(bad_path)
return None
except OSError as e:
# raise e
bad_paths = self.metadata["frame_files"].iloc[item]
for bad_path in bad_paths:
print(e)
print(f"Removing bad frame file {bad_path}")
return None
except RuntimeError as e:
# raise e
bad_path = self.metadata["audio_file"].iloc[item]
print(e)
print(f"Removing bad audio file {bad_path}")
# os.remove(bad_path)
return None
class PlacesAudio(AVDataset):
def _load_info(self, split) -> pd.DataFrame:
df = pd.read_json(join(os.path.dirname(self._audio_root()), "metadata", f"{split}.json"))
df["id"] = df["data"].apply(lambda d: d["wav"][5:-4])
if self.use_caption:
if split == "train":
word_df = pd.read_json(
join(os.path.dirname(self._audio_root()), "metadata", f"word-alignment-{split}.json")
)
else:
word_df = pd.read_csv(
join(os.path.dirname(self._audio_root()), "metadata", f"word-alignment-{split}.csv")) \
.groupby("id").aggregate(lambda g: list(g)).reset_index().drop("Unnamed: 0", axis=1)
df = pd.merge(df, word_df, on="id", how="outer")
return df
def _missing_threshold(self) -> float:
# return 0.0
return 0.97 # TODO fix
def _expected_num_frames(self):
return 1
def default_target_length(self) -> int:
return 20
def _frame_root(self) -> str:
return join(os.path.dirname(self.root), "places_subset")
def _audio_root(self) -> str:
return join(self.root, "wavs")
def _embed_root(self) -> str:
return join(self.root, "embedding", self.audio_embed_model)
def _dataset_folder(self) -> str:
return "PlacesAudio_400k_distro"
def _get_audio_file(self, row) -> str:
return join(self._audio_root(), row["id"] + ".wav")
def _get_frame_files(self, row) -> List[str]:
return [join(self._frame_root(), row["data"]["image"])]
def _get_embed_file(self, row) -> str:
return join(self._embed_root(), row["id"] + ".npz")
class AudioSet(AVDataset):
def _expected_num_frames(self):
return 10
def default_target_length(self) -> int:
return 20
def _dataset_folder(self) -> str:
return "audioset-raw"
def _missing_threshold(self) -> float:
if self.split == "val" or self.split == "test":
return 0.02
else:
return 0.17
def train_seg_file(self):
return "unbalanced_train_segments.csv"
def _load_info(self, split) -> pd.DataFrame:
if split == "train":
df = pd.read_csv(join(self.root, "metadata", self.train_seg_file()))
elif split == "val" or split == "test":
df = pd.read_csv(join(self.root, "metadata", "eval_segments_subset.csv"))
else:
raise ValueError(f"Unknown split {split}")
labels = pd.read_csv(join(self.root, "metadata", "class_labels_indices.csv"))
mid_to_index = dict(zip(labels["mid"], labels["index"]))
df["tags"] = df["positive_labels"].apply(lambda l: [mid_to_index[e] for e in l.strip('"').split(",")])
self.num_tags = max(*[i for k, i in mid_to_index.items()]) + 1
df["id"] = df.apply(lambda r: f"{r.YTID}_{r.start_seconds}_{r.end_seconds}", axis=1)
return df
def _frame_root(self) -> str:
return join(self.root, "frames")
def _audio_root(self) -> str:
return join(self.root, "audio")
def _all_frame_files(self) -> Set[str]:
frame_files = set()
for entry in os.scandir(self._frame_root()):
if entry.is_file():
frame_files.add(entry.path)
elif entry.is_dir():
for subentry in os.scandir(entry.path):
if subentry.is_file():
frame_files.add(subentry.path)
return frame_files
def _all_audio_files(self) -> Set[str]:
return set(entry.path for entry in os.scandir(self._audio_root()) if entry.is_file())
def _all_embed_files(self) -> Set[str]:
return set(entry.path for entry in os.scandir(self._embed_root()) if entry.is_file())
def _embed_root(self) -> str:
return join(self.root, "embedding", self.audio_embed_model)
def prefix(self):
return ""
def _get_audio_file(self, row) -> str:
return f"{self.root}/audio/{self.prefix()}{row.id}.mp3"
def _get_frame_files(self, row) -> List[str]:
return [f"{self.root}/frames/frame_{fn}/{self.prefix()}{row.id}.jpg" for fn in range(10)]
def _get_embed_file(self, row) -> str:
return f"{self.root}/embedding/{self.audio_embed_model}/{self.prefix()}{row.id}.npz"
class AudioSetEval(AudioSet):
def _dataset_folder(self) -> str:
return "audioset-eval"
def _get_frame_files(self, row) -> List[str]:
base_path = f"{self.root}/frames/{self.prefix()}{row.id}_"
return [base_path + f"{fn}.jpg" for fn in range(10)]
def prefix(self):
return ""
class ADE20K(AVDataset):
def _split_name(self, split):
if split == "val":
return "validation"
elif split == "train":
return "training"
else:
raise ValueError(f"Unknown split name {split}")
def _load_info(self, split) -> pd.DataFrame:
df = pd.read_json(join(self.root, "metadata_with_caption_dedup.json"))
df["id"] = df["image"]
df = df[df["image"].apply(lambda f: f.split("/")[0] == split)]
if self.use_caption:
df["word"] = df["caption"].apply(lambda c: c["words"])
df["start"] = df["caption"].apply(lambda c: c["start"])
df["end"] = df["caption"].apply(lambda c: c["end"])
df["text"] = df["word"].apply(lambda l: " ".join(l))
return df
def _missing_threshold(self) -> float:
return 0.03
def _expected_num_frames(self):
return 1
def default_target_length(self) -> int:
return 20
def _dataset_folder(self) -> str:
return "ADE20K"
def _frame_root(self) -> str:
return join(self.root, "frames")
def _audio_root(self) -> str:
return join(self.root, "audio")
def _semseg_root(self) -> str:
return join(self.root, "annotations")
def _embed_root(self) -> str:
return join(self.root, "embedding", self.audio_embed_model)
def _get_audio_file(self, row) -> str:
return join(self._audio_root(), row["audio"])
def _get_frame_files(self, row) -> List[str]:
return [join(self._frame_root(), row["image"])]
def _get_semseg_file(self, row) -> str:
return join(self._semseg_root(), row["seg"])
def _get_embed_file(self, row) -> str:
return join(self._embed_root(), row["image"].replace(".jpg", ".npz"))
def num_classes(self):
return 3662
class ADE20KPromptedBase(AVDataset):
def _expected_num_frames(self):
return 1
def default_target_length(self) -> int:
return 20
def _frame_root(self) -> str:
return join(self.root, "frames")
def _audio_root(self) -> str:
return join(self.root, "audio")
def _semseg_root(self) -> str:
return join(self.root, "annotations")
def _embed_root(self) -> str:
return join(self.root, "embedding", self.audio_embed_model)
def _get_frame_files(self, row) -> List[str]:
return [join(self._frame_root(), row["image_location"])]
def _get_semseg_file(self, row) -> str:
return join(self._semseg_root(), row["image_location"].replace(".jpg", "_seg.png"))
def _get_embed_file(self, row) -> str:
return join(self._embed_root(), row["image_location"].replace(".jpg", ".npz"))
def num_classes(self):
return 3662
def _missing_threshold(self) -> float:
return 0.0
class ADE20KSpeechPrompted(ADE20KPromptedBase):
def _get_audio_file(self, row) -> str:
return join(self._audio_root(), row["speech_prompt_file"].split("/")[-1])
def _dataset_folder(self) -> str:
return "ADE20KSpeechPrompted"
def _audio_root(self) -> str:
# return join(self.root, "audio-noise-10") # TODO Remove
return join(self.root, "audio") # TODO Remove
def _load_info(self, split) -> pd.DataFrame:
df = pd.read_csv(join(self.root, "prompted_segmentation.csv"))
df = df[df["speech_prompt_file"].apply(lambda s: isinstance(s, str))]
df = df[df["ade_class_id"].apply(lambda id: id != 0)]
df["id"] = df["image_location"]
return df
class ADE20KSoundPrompted(ADE20KPromptedBase):
def _get_audio_file(self, row) -> str:
return join(self._audio_root(), row["vggsound_file"].split("/")[-1])
def _dataset_folder(self) -> str:
return "ADE20KSoundPrompted"
def _load_info(self, split) -> pd.DataFrame:
df = pd.read_csv(join(self.root, "prompted_segmentation.csv"))
df = df[df["vggsound_file"].apply(lambda s: isinstance(s, str))]
df = df[df["ade_class_id"].apply(lambda id: id != 0)]
df["id"] = df["image_location"]
return df
class PlacesAndAudioSet(Dataset):
def __init__(self, **kwargs):
self.ds1 = PlacesAudio(**kwargs, n_frames=1)
self.ds2 = AudioSet(**kwargs, n_frames=1)
def __len__(self):
return len(self.ds1)
def __getitem__(self, item):
if torch.rand(1).item() > .5:
d = self.ds2[torch.randint(0, len(self.ds2) - 1, size=(1,)).item()]
if d is not None:
d["source"] = 1
else:
d = self.ds1[item]
if d is not None:
d["source"] = 0
return d
class AVDataModule(pl.LightningDataModule):
def __init__(self,
dataset_name,
load_size,
image_aug,
audio_aug,
extra_audio_masking,
audio_model_type,
pytorch_data_dir,
use_cached_embs,
batch_size,
num_workers,
audio_level,
neg_audio,
data_for_plotting,
use_original_val_set,
use_extra_val_sets,
quad_mixup,
bg_mixup,
patch_mixup,
patch_size,
**kwargs):
super().__init__()
self.dataset_name = dataset_name
self.load_size = load_size
self.image_aug = image_aug
self.audio_aug = audio_aug
self.extra_audio_masking = extra_audio_masking
self.audio_model_type = audio_model_type
self.pytorch_data_dir = pytorch_data_dir
self.use_cached_embs = use_cached_embs
self.batch_size = batch_size
self.num_workers = num_workers
self.data_for_plotting = data_for_plotting
self.audio_level = audio_level
self.neg_audio = neg_audio
self.quad_mixup = quad_mixup
self.bg_mixup = bg_mixup
self.patch_mixup = patch_mixup
self.patch_size = patch_size
self.loader_args = dict(
num_workers=self.num_workers,
batch_size=self.batch_size,
)
self.save_hyperparameters()
self.extra_args = kwargs
self.use_original_val_set = use_original_val_set
self.use_extra_val_sets = use_extra_val_sets
def maybe_unpack(self, remove_source):
targets = [
(
join(self.pytorch_data_dir, "audioset-subset", "frame_archives"),
join(self.pytorch_data_dir, "audioset-subset", "frames"),
1
),
(
join(self.pytorch_data_dir, "audioset-raw", "frame_archives"),
join(self.pytorch_data_dir, "audioset-raw", "frames"),
4
),
(
join(self.pytorch_data_dir, "audioset-raw", "audio_archives"),
join(self.pytorch_data_dir, "audioset-raw", "audio"),
1
),
]
for (archive_dir, target_dir, n_parts) in targets:
if not os.path.exists(target_dir) and os.path.exists(archive_dir):
print(f"Could not find {target_dir}, attempting to unpack archives")
if os.path.exists(archive_dir):
untar_all(archive_dir, target_dir, remove_source)
else:
raise RuntimeError(f"Could not find archive folder: {archive_dir}")
def get_dataset_by_name(self, name, stage, data_for_plotting, n_frames=None):
if name == "vggss":
resize_op = T.Resize((self.load_size, self.load_size), Image.BILINEAR)
else:
resize_op = T.Resize(self.load_size, Image.BILINEAR)
img_transform = T.Compose([
resize_op,
T.CenterCrop(self.load_size),
T.ToTensor(),
norm])
if self.image_aug:
train_img_transform = T.Compose([
T.RandomResizedCrop(self.load_size),
T.RandomHorizontalFlip(),
T.ColorJitter(.2, .2, .2, .2),
T.RandomGrayscale(),
T.ToTensor(),
norm])
val_img_transform = img_transform
else:
train_img_transform = img_transform
val_img_transform = img_transform
if self.audio_aug:
train_audio_aug = True
val_audio_aug = False
else:
train_audio_aug = False
val_audio_aug = False
if self.audio_model_type == "hubert":
from featurizers.Hubert import HubertAudioTransform
audio_transform = HubertAudioTransform()
else:
audio_transform = None
if self.audio_model_type == "passt":
sample_rate = 32000
else:
sample_rate = 16000
if not self.use_cached_embs:
if self.audio_model_type == "hubert":
self.extra_args["use_audio"] = True
elif self.audio_model_type in {"audiomae", "audiomae-finetuned", "cavmae", "cavmae-mixed", "imagebind"}:
self.extra_args["use_spec"] = True
elif self.audio_model_type == "davenet":
self.extra_args["use_audio"] = True
self.extra_args["use_davenet_spec"] = True
elif self.audio_model_type == "fnac":
self.extra_args["use_audio"] = True
self.extra_args["use_fnac_spec"] = True
else:
raise ValueError(f"Unknown audio model type {self.audio_model_type}")
if self.audio_model_type == "cavmae" or self.audio_model_type == "cavmae-mixed":
self.extra_args["spec_mean"] = -5.081
self.extra_args["spec_std"] = 4.4849
elif self.audio_model_type == "imagebind":
self.extra_args["spec_mean"] = -4.268
self.extra_args["spec_std"] = 9.138
# if self.audio_model_type in {"audiomae", "audiomae-finetune", "cavmae"} \
# and "override_target_length" not in self.extra_args:
if "override_target_length" not in self.extra_args:
self.extra_args["override_target_length"] = 10
data_args = dict(
root=self.pytorch_data_dir,
use_frames=True,
audio_transform=audio_transform,
sample_rate=sample_rate,
audio_level=self.audio_level,
**self.extra_args
)
if n_frames is not None:
data_args["n_frames"] = n_frames
train_args = dict(
frame_transform=train_img_transform,
extra_audio_masking=self.extra_audio_masking,
neg_audio=self.neg_audio,
quad_mixup=self.quad_mixup,
bg_mixup=self.bg_mixup,
patch_mixup=self.patch_mixup,
patch_size=self.patch_size,
audio_aug=train_audio_aug
)
val_args = dict(
frame_transform=val_img_transform,
audio_aug=val_audio_aug
)
if data_for_plotting:
val_args["use_audio"] = True
val_args["use_spec"] = True
if "ade" in name:
label_transform = T.Compose([
T.Resize(self.load_size, Image.NEAREST),
T.CenterCrop(self.load_size),
prep_ade_label
])
else:
label_transform = T.Compose([
T.Resize(self.load_size, Image.NEAREST),
T.CenterCrop(self.load_size)
])
val_args["use_audio"] = True
val_args["label_transform"] = label_transform
if name == "places-audio":
dataset_constructor = PlacesAudio
elif name == "mixed-full":
dataset_constructor = PlacesAndAudioSet
elif name == "audio-set-full":
dataset_constructor = AudioSet
elif name == "audio-set-eval":
dataset_constructor = AudioSetEval
elif name == "ade":
val_args["use_semseg"] = True
dataset_constructor = ADE20K
elif name == "ade-speech-prompted":
val_args["use_semseg"] = True
dataset_constructor = ADE20KSpeechPrompted
elif name == "ade-sound-prompted":
val_args["use_semseg"] = True
dataset_constructor = ADE20KSoundPrompted
else:
raise ValueError(f"Unknown dataset name {name}")
data_args["use_audio_embed"] = self.use_cached_embs
data_args["audio_embed_model"] = self.audio_model_type
if stage == "full":
val_dataset = dataset_constructor(split="val", **{**data_args, **val_args})
train_dataset = dataset_constructor(split="train", **{**data_args, **val_args})
return ConcatDataset([train_dataset, val_dataset])
elif stage == "fit":
return dataset_constructor(split="train", **{**data_args, **train_args})
elif stage == "validate":
return dataset_constructor(split="val", **{**data_args, **val_args})
else:
raise ValueError(f"Unknown stage: {stage}")
def _maybe_subset(self, dataset, length):
if len(dataset) > length and self.dataset_name not in {"ade-sound-prompted", "ade-speech-prompted", "vggss"}:
print("Using a subset of validation data")
return Subset(dataset, generate_subset(len(dataset), length))
else:
print("Not using val subset")
return dataset
def _make_val_datasets(self):
val_sets = []
if self.use_original_val_set:
val_sets.append(self._maybe_subset(self.get_dataset_by_name(
self.dataset_name, "validate", self.data_for_plotting), 1000))
if self.use_extra_val_sets:
val_sets.append(self._maybe_subset(self.get_dataset_by_name(
"places-audio", "validate", self.data_for_plotting), 1000))
val_sets.append(self._maybe_subset(self.get_dataset_by_name(
"audio-set-eval", "validate", False, n_frames=1), 1000))
val_sets.append(self.get_dataset_by_name(
"ade-speech-prompted", "validate", True))
val_sets.append(self.get_dataset_by_name(
"ade-sound-prompted", "validate", self.data_for_plotting))
return val_sets
def setup(self, stage: str):
if stage == "full":
self.full_dataset = self.get_dataset_by_name(self.dataset_name, stage, self.data_for_plotting)
elif stage == "fit":
self.train_dataset = self.get_dataset_by_name(self.dataset_name, stage, self.data_for_plotting)
self.val_datasets = self._make_val_datasets()
elif stage == "validate":
self.val_datasets = self._make_val_datasets()
else:
raise ValueError(f"Unknown stage: {stage}")
def train_dataloader(self):
return DataLoader(self.train_dataset, shuffle=True, **self.loader_args, collate_fn=custom_coallate)
def subsampled_train_dataloader(self, k=5000):
if len(self.train_dataset) > k:
ds = Subset(self.train_dataset, generate_subset(len(self.train_dataset), k))
else:
ds = self.train_dataset
return DataLoader(ds, shuffle=True, **self.loader_args, collate_fn=custom_coallate)
def val_dataloader(self):
return [
DataLoader(dataset, shuffle=False, **self.loader_args, collate_fn=custom_coallate)
for dataset in self.val_datasets
]
def full_dataloader(self):
return DataLoader(self.full_dataset, shuffle=False, **self.loader_args, collate_fn=custom_coallate)
def generate_subset(n, batch, seed=0):
np.random.seed(seed)
return np.random.permutation(n)[:batch]
def prep_ade_label(img):
seg = np.array(img)
class_labels = (seg[:, :, 0] / 10).astype(np.int32) * 256 + (seg[:, :, 1].astype(np.int32))
return class_labels
def maybe_replace(e, not_none):
if e is not None:
return e
else:
print("Warning found a None in the dataset indicitive of a loading failure, replacing it with another item")
return not_none[0]
empty_caption = {
"words": [],
"start": [],
"end": [],
}
def custom_coallate(l):
if l is None:
return l
not_none = [e for e in l if e is not None]
assert len(not_none) > 0
l = [maybe_replace(e, not_none) for e in l]
to_merge = {}
def pop_or_default(dict, k, default):
if k in dict:
return dict.pop(k)
else:
print(f"WARNING: Could not find {k}, using {default}")
return default
if "caption" in l[0]:
to_merge["caption"] = [pop_or_default(l[i], "caption", empty_caption) for i in range(len(l))]
if "text" in l[0]:
to_merge["text"] = [pop_or_default(l[i], "text", "") for i in range(len(l))]
result = default_collate(l)
return {**result, **to_merge}
if __name__ == "__main__":
from featurizers.Hubert import HubertAudioTransform
pytorch_data_dir = "/pytorch-data"
dataset_constructor = PlacesAudio
split = "val"
img_transform = T.Compose([
T.Resize(224, Image.BILINEAR),
T.CenterCrop(224),
T.ToTensor(),
norm])
video_transform = T.Compose([
T.Resize(224, Image.BILINEAR),
T.CenterCrop(224),
norm])
label_transform = T.Compose([
T.Resize(224, Image.NEAREST),
T.CenterCrop(224)
])
audio_transform = HubertAudioTransform()
data_args = dict(
root=pytorch_data_dir,
frame_transform=img_transform,
use_frames=True,
use_spec=True,
use_audio=True,
use_caption=False,
use_semseg=False,
label_transform=label_transform,
audio_transform=audio_transform,
use_audio_embed=False,
audio_embed_model="audiomae",
extra_audio_masking=False,
neg_audio=False,
override_target_length=10,
audio_level=False,
quad_mixup=.3,
patch_mixup=.3,
bg_mixup=.3,
)
def return_datasets(dataset_constructor, split):
dataset = dataset_constructor(split=split, **data_args)
return dataset
train_ds = return_datasets(dataset_constructor, split)
print(len(train_ds))
train_loader = DataLoader(train_ds, batch_size=1, shuffle=False, num_workers=36, collate_fn=custom_coallate)
for batch in tqdm(train_loader):
pass