File size: 45,951 Bytes
e6d4b46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67b4506
 
 
e6d4b46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
import glob
import os
from abc import ABC, abstractmethod
from glob import glob
from os.path import join
from pathlib import Path
from typing import List, Set

import audioread
import numpy as np
import pandas as pd
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
import torchaudio
import torchvision.transforms as T
from PIL import Image
from torch.utils.data import Dataset, DataLoader, default_collate, Subset, ConcatDataset
from tqdm import tqdm

from DenseAV.denseav.constants import AUDIO_MASK, AUDIO_POS_MASK, IMAGE_MASK, IMAGE_INPUT
from DenseAV.denseav.data.make_tarballs import untar_all
from DenseAV.denseav.shared import norm, prep_waveform


def sample_choice(choices, probs):
    # Check that probabilities sum to 1 and are non-negative
    assert sum(probs) == 1, "Probabilities must sum to 1"
    assert all(p >= 0 for p in probs), "Probabilities cannot be negative"

    # Convert probs to a tensor
    probs_tensor = torch.tensor(probs)

    # Sample a choice according to the probabilities
    index = torch.multinomial(probs_tensor, 1).item()

    # Return the sampled choice
    return choices[index]


def grid_frames(frames):
    top_row = torch.cat([frames[0], frames[1]], dim=2)
    bottom_row = torch.cat([frames[2], frames[3]], dim=2)
    return torch.cat([top_row, bottom_row], dim=3)


def create_mixed_image(pos_frame, neg_frame, patch_size):
    # Step 1: Check that patch_size evenly divides the image dimensions
    b, c, h, w = pos_frame.shape
    assert h % patch_size == 0 and w % patch_size == 0, "Patch size must evenly divide image dimensions"

    # Step 2: Create a random binary mask with the same number of patches as the image
    mask = torch.randint(0, 2, (b, 1, h // patch_size, w // patch_size))

    # Step 3: Create a new image using patches from pos_frame and neg_frame according to the mask
    # Upscale the mask to the size of the image
    mask_upscaled = F.interpolate(mask.to(torch.float32), scale_factor=patch_size)

    # Use the mask to create a mixed frame
    mixed_frame = mask_upscaled * pos_frame + (1 - mask_upscaled) * neg_frame

    return mixed_frame, mask_upscaled


class AVDataset(ABC, Dataset):

    @abstractmethod
    def _dataset_folder(self) -> str:
        pass

    @abstractmethod
    def _load_info(self, split) -> pd.DataFrame:
        """

        This function should return a dataframe with at least a column "id"

        @return:

        """
        pass

    @abstractmethod
    def _missing_threshold(self) -> float:
        pass

    @abstractmethod
    def default_target_length(self) -> int:
        pass

    def target_length(self):
        if self.override_target_length is not None:
            return self.override_target_length
        else:
            return self.default_target_length()

    def _frame_root(self) -> str:
        return join(self.root, "frames", self.split)

    def _video_root(self) -> str:
        return join(self.root, "videos", self.split)

    def _audio_root(self) -> str:
        return join(self.root, "audio", self.split)

    def _semseg_root(self) -> str:
        return join(self.root, "annotations", self.split)

    def _embed_root(self) -> str:
        return join(self.root, "embedding", self.audio_embed_model, self.split)

    def _label_root(self) -> str:
        return join(self.root, "pseudo-labels")

    def _hn_root(self) -> str:
        return join(self.root, "hard_negatives")

    def _all_video_files(self) -> Set[str]:
        return set(str(p) for p in Path(join(self._video_root())).rglob('*'))

    def _all_frame_files(self) -> Set[str]:
        return set(str(p) for p in Path(join(self._frame_root())).rglob('*'))

    def _all_audio_files(self) -> Set[str]:
        return set(str(p) for p in Path(join(self._audio_root())).rglob('*'))

    def _all_embed_files(self) -> Set[str]:
        return set(str(p) for p in Path(join(self._embed_root())).rglob('*'))

    def _get_frame_files(self, row) -> List[str]:
        return [self._frame_root() + "/" + row["id"] + f"_{i}.jpg" for i in range(self._expected_num_frames())]

    def _get_semseg_file(self, row) -> str:
        raise NotImplementedError("Class has not implemented _get_semseg_files")

    def _get_audio_file(self, row) -> str:
        return self._audio_root() + "/" + row["id"] + ".mp3"

    def _get_video_file(self, row) -> str:
        return self._video_root() + "/" + row["id"] + ".mp4"

    def _get_embed_file(self, row) -> str:
        return self._embed_root() + "/" + row["id"] + ".npz"

    def _add_files_to_metadata(self, df) -> pd.DataFrame:
        tqdm.pandas()

        if self.use_audio_embed:
            df["embed_file"] = df.progress_apply(self._get_embed_file, axis=1)

        if self.use_audio or self.use_spec:
            df["audio_file"] = df.progress_apply(self._get_audio_file, axis=1)

        if self.use_frames:
            df["frame_files"] = df.progress_apply(self._get_frame_files, axis=1)

        if self.use_semseg:
            df["semseg_file"] = df.progress_apply(self._get_semseg_file, axis=1)

        df = self._filter_valid_metadata(df)

        if self.use_hn:
            loaded = np.load(join(self._hn_root(), "original", f"{self.split}_hard_negatives.npz"))
            df["hn0"] = [t for t in torch.tensor(loaded["indices_0"])]
            df["hn1"] = [t for t in torch.tensor(loaded["indices_1"])]

        return df

    def _split_name(self, split):
        return split

    def _filter_valid_metadata(self, df: pd.DataFrame) -> pd.DataFrame:

        print("MY_DIR ", list(glob(join(self.root, "*"))))
        if self.use_audio_embed:
            missing_embed_files = set(df['embed_file']) - self.all_embed_files
            valid_audio = ~df['embed_file'].isin(missing_embed_files)
            print("ALL EMBED ", len(self.all_embed_files))
        elif self.use_audio or self.use_spec:
            missing_audio_files = set(df['audio_file']) - self.all_audio_files
            valid_audio = ~df['audio_file'].isin(missing_audio_files)
            print("ALL AUDIO ", len(self.all_audio_files))

        if self.use_frames:
            missing_frame_files = set(
                item for sublist in df['frame_files'].tolist() for item in sublist) - self.all_frame_files
            valid_frames = df['frame_files'].apply(lambda x: not any(file in missing_frame_files for file in x))
            print("ALL FRAMES ", len(self.all_frame_files))
            df["is_valid"] = valid_audio & valid_frames
        else:
            df["is_valid"] = valid_audio

        percent_missing = (1 - (df["is_valid"].sum() / len(df)))

        assert percent_missing <= self._missing_threshold(), \
            f"Too many missing files: %{round(percent_missing * 100.0, 2)}"
        assert len(df) > 0, "No files found"
        return df[df["is_valid"]]

    def __init__(

            self,

            root: str,

            split: str = "train",

            use_frames=False,

            frame_transform=None,

            use_audio=False,

            use_spec=False,

            use_audio_embed=False,

            use_hn=False,

            use_caption=False,

            use_semseg=False,

            neg_audio=False,

            use_davenet_spec=False,

            use_fnac_spec=False,

            n_label_frames=196,

            label_transform=None,

            audio_embed_model="hubert",

            n_frames=1,

            audio_transform=None,

            audio_aug=False,

            spec_transform=None,

            spec_mel_bins=128,

            spec_mean=-6.6268077,

            spec_std=5.358466,

            sample_rate=16000,

            override_target_length=None,

            use_tags=False,

            extra_audio_masking=False,

            audio_level=False,

            quad_mixup=0.0,

            bg_mixup=0.0,

            patch_mixup=0.0,

            patch_size=8,

    ):
        super(AVDataset).__init__()
        self.pytorch_data_dir = root
        self.split = self._split_name(split)
        self.root = join(root, self._dataset_folder())
        self.use_frames = use_frames
        self.frame_transform = frame_transform
        self.use_audio = use_audio
        self.use_spec = use_spec
        self.use_audio_embed = use_audio_embed
        self.use_davenet_spec = use_davenet_spec
        self.use_fnac_spec = use_fnac_spec
        self.use_hn = use_hn
        self.use_caption = use_caption
        self.label_transform = label_transform
        self.audio_embed_model = audio_embed_model
        self.audio_aug = audio_aug
        self.n_frames = n_frames
        self.audio_transform = audio_transform
        self.spec_transform = spec_transform
        self.spec_mel_bins = spec_mel_bins
        self.spec_mean = spec_mean
        self.spec_std = spec_std
        self.use_semseg = use_semseg
        self.override_target_length = override_target_length
        self.use_tags = use_tags
        self.extra_audio_masking = extra_audio_masking
        self.neg_audio = neg_audio
        self.audio_level = audio_level

        self.quad_mixup = quad_mixup
        self.bg_mixup = bg_mixup
        self.patch_mixup = patch_mixup
        self.patch_size = patch_size

        self.sample_rate = sample_rate
        self.n_label_frames = n_label_frames

        if self.use_audio_embed:
            self.all_embed_files = self._all_embed_files()

        if self.use_audio or self.use_spec:
            self.all_audio_files = self._all_audio_files()

        if self.use_frames:
            self.all_frame_files = self._all_frame_files()

        self.metadata = self._add_files_to_metadata(self._load_info(self.split))

        assert len(self.metadata) > 0

    def __len__(self):
        return len(self.metadata)

    @abstractmethod
    def _expected_num_frames(self) -> int:
        pass

    def get_audio_mask(self, real_length, padded_length, target_size):
        if not isinstance(real_length, torch.Tensor):
            real_length = torch.tensor(real_length)
            padded_length = torch.tensor(padded_length)

        n_frames = ((real_length / padded_length) * target_size).to(torch.int64)
        oh = F.one_hot(n_frames, num_classes=target_size + 1)
        if len(oh.shape) == 1:
            oh = oh.unsqueeze(0)
        return (1 - torch.cumsum(oh, dim=1))[:, :-1].to(torch.bool)

    def _base_get_item(self, item):
        id = self.metadata["id"].iloc[item]
        data_dict = {"metadata": {"id": id, "index": item}}

        if self.use_tags and "tags" in self.metadata:
            tags = torch.tensor(self.metadata["tags"].iloc[item])
            tag_oh = torch.zeros(self.num_tags, dtype=torch.float32)
            tag_oh[tags] += 1
            data_dict["tags"] = tag_oh

        if self.use_audio or self.use_spec:
            audio_file = self.metadata["audio_file"].iloc[item]
            data_dict["metadata"]["audio_file"] = audio_file
            loaded_waveform, obs_sr = torchaudio.load(audio_file)
            loaded_waveform = loaded_waveform[0]

            if self.neg_audio:
                neg_audio_file = self.metadata["audio_file"].iloc[torch.randint(0, len(self), size=(1,)).item()]
                data_dict["metadata"]["neg_audio_file"] = neg_audio_file
                neg_waveform, neg_obs_sr = torchaudio.load(neg_audio_file)
                neg_waveform = neg_waveform[0]
            else:
                neg_waveform, neg_obs_sr = None, None

            (waveform,
             spectrogram,
             audio_length,
             total_length,
             original_length,
             mask,
             pos_mask) = prep_waveform(
                loaded_waveform,
                obs_sr,
                self.target_length(),
                self.spec_mel_bins,
                self.spec_mean,
                self.spec_std,
                self.sample_rate,
                self.use_spec,
                False,
                self.extra_audio_masking,
                neg_waveform,
                neg_obs_sr,
                self.audio_level,
                self.audio_aug
            )

            if self.spec_transform is not None and spectrogram is not None:
                spectrogram = self.spec_transform(spectrogram)

            if self.audio_transform is not None:
                waveform = self.audio_transform(waveform)

            data_dict["audio"] = waveform
            data_dict[AUDIO_MASK] = mask
            data_dict[AUDIO_POS_MASK] = pos_mask
            data_dict["audio_length"] = audio_length
            data_dict["original_length"] = original_length
            data_dict["total_length"] = total_length
            if spectrogram is not None:
                data_dict["spec"] = spectrogram

            if mask.mean() < .04:
                return None

        if self.use_davenet_spec:
            from data.DavenetUtilities import davenet_load_audio
            audio_file = self.metadata["audio_file"].iloc[item]
            spec, n_frames = davenet_load_audio(audio_file)
            data_dict["davenet_spec"] = spec

        if self.use_fnac_spec:
            from featurizers.FNACAVL import load_spectrogram as fnac_load_spectrogram
            audio_file = self.metadata["audio_file"].iloc[item]
            data_dict["fnac_spec"] = fnac_load_spectrogram(audio_file, 3)

        if self.use_audio_embed:
            loaded = np.load(self.metadata["embed_file"].iloc[item])
            data_dict["audio_emb"] = loaded["feat"]
            data_dict["audio_length"] = loaded["audio_length"]
            data_dict["total_length"] = loaded["total_length"]
            data_dict["original_length"] = loaded["original_length"]
            data_dict[AUDIO_MASK] = self.get_audio_mask(
                data_dict["audio_length"],
                data_dict["total_length"],
                data_dict["audio_emb"].shape[-1]) \
                .squeeze().to(torch.float32)
            data_dict[AUDIO_POS_MASK] = data_dict[AUDIO_MASK].to(torch.float32)

        if self.use_frames:

            def get_frames(item):
                file_group = self.metadata["frame_files"].iloc[item]
                if self.n_frames is not None:
                    selected_frames = torch.randperm(len(file_group))[:self.n_frames]
                    file_group = [file_group[i] for i in selected_frames]
                data_dict["metadata"]["frame_files"] = file_group
                images = [Image.open(file).convert("RGB") for file in file_group]

                if self.frame_transform is not None:
                    images = torch.cat([self.frame_transform(img).unsqueeze(0) for img in images], dim=0)

                return images, file_group

            no_mixup = 1.0 - (self.bg_mixup + self.quad_mixup + self.patch_mixup)

            mixup_type = sample_choice(
                ["quad", "bg", "patch", None],
                [self.quad_mixup, self.bg_mixup, self.patch_mixup, no_mixup]
            )

            if mixup_type == "quad":
                indices = [item] + torch.randint(0, len(self), size=(3,)).numpy().tolist()
                frames_and_files = [get_frames(i) for i in indices]
                file_group = frames_and_files[0][1]
                perm = torch.randperm(4)
                all_frames = [F.interpolate(frames_and_files[i][0], scale_factor=0.5, mode="bilinear") for i in
                              perm]
                b, c, h, w = all_frames[0].shape
                indices = [indices[p] for p in perm]
                masks = [(torch.ones(b, 1, h, w) if index == item else torch.zeros(b, 1, h, w)) for index in
                         indices]

                data_dict[IMAGE_INPUT] = grid_frames(all_frames)
                data_dict[IMAGE_MASK] = grid_frames(masks)
            elif mixup_type == "bg":
                neg_item = torch.randint(0, len(self), size=(1,)).item()
                neg_frame, _ = get_frames(neg_item)
                pos_frame, file_group = get_frames(item)

                b, c, h, w = neg_frame.shape
                neg_mask = torch.zeros(b, 1, h, w)
                pos_mask = torch.ones(b, 1, h, w)

                if torch.rand(1).item() > 0.5:
                    bg_frame = neg_frame
                    bg_mask = neg_mask
                    fg_frame = F.interpolate(pos_frame, scale_factor=0.5, mode="bilinear")
                    fg_mask = F.interpolate(pos_mask, scale_factor=0.5, mode="bilinear")
                else:
                    bg_frame = pos_frame
                    bg_mask = pos_mask
                    fg_frame = F.interpolate(neg_frame, scale_factor=0.5, mode="bilinear")
                    fg_mask = F.interpolate(neg_mask, scale_factor=0.5, mode="bilinear")

                start_h = torch.randint(0, h // 2, size=(1,))
                start_w = torch.randint(0, w // 2, size=(1,))
                bg_frame[:, :, start_h:start_h + fg_frame.shape[2], start_w:start_w + fg_frame.shape[3]] = fg_frame
                bg_mask[:, :, start_h:start_h + fg_frame.shape[2], start_w:start_w + fg_frame.shape[3]] = fg_mask

                data_dict["frames"] = bg_frame
                data_dict["image_masks"] = bg_mask

            elif mixup_type == "patch":
                neg_item = torch.randint(0, len(self), size=(1,)).item()
                neg_frame, _ = get_frames(neg_item)
                pos_frame, file_group = get_frames(item)
                frames, masks = create_mixed_image(pos_frame, neg_frame, self.patch_size)
                data_dict["frames"] = frames
                data_dict["image_masks"] = masks

            elif mixup_type is None:
                frames, file_group = get_frames(item)

                data_dict["frames"] = frames
                b, c, h, w = frames.shape
                data_dict["image_masks"] = torch.ones(b, 1, h, w)
            else:
                raise ValueError(f"Unknown mixup type {mixup_type}")

            if "original_length" in data_dict:
                if self._expected_num_frames() == 1:
                    frame_nums = torch.tensor([0])
                else:
                    frame_nums = torch.tensor([
                        int(f.split("/")[-1].split("_")[-1].split(".")[0]) for f in file_group])

                data_dict["frame_nums"] = frame_nums
                frame_fracs = ((frame_nums + .5) / (self._expected_num_frames()))
                frame_position = (frame_fracs * data_dict["original_length"]) / data_dict["total_length"]
                data_dict["frame_position"] = frame_position

        if self.use_caption:
            if "word" in self.metadata:
                words = self.metadata["word"].iloc[item]
                start = self.metadata["start"].iloc[item]
                end = self.metadata["end"].iloc[item]
                if isinstance(words, float):
                    words = [""]
                    start = [0.0]
                    end = [-1.0]

                data_dict["caption"] = {
                    "words": words,
                    "start": start,
                    "end": end,
                }
            if "text" in self.metadata:
                data_dict["text"] = self.metadata["text"].iloc[item]

        if self.use_semseg:
            semseg_path = join(self._semseg_root(), self.metadata["semseg_file"].iloc[item])
            semseg = Image.open(semseg_path)
            if self.label_transform is not None:
                semseg = np.array(self.label_transform(semseg))
            data_dict["semseg"] = semseg
            data_dict["metadata"]["semseg_file"] = semseg_path

            # if hasattr(self, "num_classes"):
            #     data_dict["num_pixels_per_class"] = F.one_hot(
            #         torch.tensor(semseg).to(torch.int64), self.num_classes() + 1).sum(dim=[0, 1])

        return data_dict

    def __getitem__(self, item):
        try:
            data_dict = self._base_get_item(item)
            if self.use_hn:
                indices = torch.cat([self.metadata["hn0"].iloc[item], self.metadata["hn1"].iloc[item]], dim=0)
                neg_index = indices[torch.randint(0, indices.shape[0], (1,))]
                negative_dict = self._base_get_item(neg_index)
                data_dict["negatives"] = negative_dict
            return data_dict
        except (audioread.exceptions.NoBackendError, EOFError) as e:
            # raise e
            bad_path = self.metadata["audio_file"].iloc[item]
            print(e)
            print(f"Removing bad audio file {bad_path}")
            # os.remove(bad_path)
            return None
        except ValueError as e:
            # raise e
            bad_path = self.metadata["audio_file"].iloc[item]
            if "Input signal length=0" in str(e):
                print(e)
                print(f"Removing bad file {bad_path} due to input signal length=0")
            #     os.remove(bad_path)
            return None
        except OSError as e:
            # raise e
            bad_paths = self.metadata["frame_files"].iloc[item]
            for bad_path in bad_paths:
                print(e)
                print(f"Removing bad frame file {bad_path}")
            return None
        except RuntimeError as e:
            # raise e
            bad_path = self.metadata["audio_file"].iloc[item]
            print(e)
            print(f"Removing bad audio file {bad_path}")
            # os.remove(bad_path)
            return None


class PlacesAudio(AVDataset):

    def _load_info(self, split) -> pd.DataFrame:
        df = pd.read_json(join(os.path.dirname(self._audio_root()), "metadata", f"{split}.json"))
        df["id"] = df["data"].apply(lambda d: d["wav"][5:-4])

        if self.use_caption:
            if split == "train":
                word_df = pd.read_json(
                    join(os.path.dirname(self._audio_root()), "metadata", f"word-alignment-{split}.json")
                )
            else:
                word_df = pd.read_csv(
                    join(os.path.dirname(self._audio_root()), "metadata", f"word-alignment-{split}.csv")) \
                    .groupby("id").aggregate(lambda g: list(g)).reset_index().drop("Unnamed: 0", axis=1)
            df = pd.merge(df, word_df, on="id", how="outer")
        return df

    def _missing_threshold(self) -> float:
        # return 0.0
        return 0.97  # TODO fix

    def _expected_num_frames(self):
        return 1

    def default_target_length(self) -> int:
        return 20

    def _frame_root(self) -> str:
        return join(os.path.dirname(self.root), "places_subset")

    def _audio_root(self) -> str:
        return join(self.root, "wavs")

    def _embed_root(self) -> str:
        return join(self.root, "embedding", self.audio_embed_model)

    def _dataset_folder(self) -> str:
        return "PlacesAudio_400k_distro"

    def _get_audio_file(self, row) -> str:
        return join(self._audio_root(), row["id"] + ".wav")

    def _get_frame_files(self, row) -> List[str]:
        return [join(self._frame_root(), row["data"]["image"])]

    def _get_embed_file(self, row) -> str:
        return join(self._embed_root(), row["id"] + ".npz")


class AudioSet(AVDataset):
    def _expected_num_frames(self):
        return 10

    def default_target_length(self) -> int:
        return 20

    def _dataset_folder(self) -> str:
        return "audioset-raw"

    def _missing_threshold(self) -> float:
        if self.split == "val" or self.split == "test":
            return 0.02
        else:
            return 0.17

    def train_seg_file(self):
        return "unbalanced_train_segments.csv"

    def _load_info(self, split) -> pd.DataFrame:
        if split == "train":
            df = pd.read_csv(join(self.root, "metadata", self.train_seg_file()))
        elif split == "val" or split == "test":
            df = pd.read_csv(join(self.root, "metadata", "eval_segments_subset.csv"))
        else:
            raise ValueError(f"Unknown split {split}")

        labels = pd.read_csv(join(self.root, "metadata", "class_labels_indices.csv"))
        mid_to_index = dict(zip(labels["mid"], labels["index"]))
        df["tags"] = df["positive_labels"].apply(lambda l: [mid_to_index[e] for e in l.strip('"').split(",")])

        self.num_tags = max(*[i for k, i in mid_to_index.items()]) + 1
        df["id"] = df.apply(lambda r: f"{r.YTID}_{r.start_seconds}_{r.end_seconds}", axis=1)
        return df

    def _frame_root(self) -> str:
        return join(self.root, "frames")

    def _audio_root(self) -> str:
        return join(self.root, "audio")

    def _all_frame_files(self) -> Set[str]:
        frame_files = set()

        for entry in os.scandir(self._frame_root()):
            if entry.is_file():
                frame_files.add(entry.path)
            elif entry.is_dir():
                for subentry in os.scandir(entry.path):
                    if subentry.is_file():
                        frame_files.add(subentry.path)

        return frame_files

    def _all_audio_files(self) -> Set[str]:
        return set(entry.path for entry in os.scandir(self._audio_root()) if entry.is_file())

    def _all_embed_files(self) -> Set[str]:
        return set(entry.path for entry in os.scandir(self._embed_root()) if entry.is_file())

    def _embed_root(self) -> str:
        return join(self.root, "embedding", self.audio_embed_model)

    def prefix(self):
        return ""

    def _get_audio_file(self, row) -> str:
        return f"{self.root}/audio/{self.prefix()}{row.id}.mp3"

    def _get_frame_files(self, row) -> List[str]:
        return [f"{self.root}/frames/frame_{fn}/{self.prefix()}{row.id}.jpg" for fn in range(10)]

    def _get_embed_file(self, row) -> str:
        return f"{self.root}/embedding/{self.audio_embed_model}/{self.prefix()}{row.id}.npz"


class AudioSetEval(AudioSet):

    def _dataset_folder(self) -> str:
        return "audioset-eval"

    def _get_frame_files(self, row) -> List[str]:
        base_path = f"{self.root}/frames/{self.prefix()}{row.id}_"
        return [base_path + f"{fn}.jpg" for fn in range(10)]

    def prefix(self):
        return ""


class ADE20K(AVDataset):

    def _split_name(self, split):
        if split == "val":
            return "validation"
        elif split == "train":
            return "training"
        else:
            raise ValueError(f"Unknown split name {split}")

    def _load_info(self, split) -> pd.DataFrame:
        df = pd.read_json(join(self.root, "metadata_with_caption_dedup.json"))
        df["id"] = df["image"]
        df = df[df["image"].apply(lambda f: f.split("/")[0] == split)]

        if self.use_caption:
            df["word"] = df["caption"].apply(lambda c: c["words"])
            df["start"] = df["caption"].apply(lambda c: c["start"])
            df["end"] = df["caption"].apply(lambda c: c["end"])
            df["text"] = df["word"].apply(lambda l: " ".join(l))
        return df

    def _missing_threshold(self) -> float:
        return 0.03

    def _expected_num_frames(self):
        return 1

    def default_target_length(self) -> int:
        return 20

    def _dataset_folder(self) -> str:
        return "ADE20K"

    def _frame_root(self) -> str:
        return join(self.root, "frames")

    def _audio_root(self) -> str:
        return join(self.root, "audio")

    def _semseg_root(self) -> str:
        return join(self.root, "annotations")

    def _embed_root(self) -> str:
        return join(self.root, "embedding", self.audio_embed_model)

    def _get_audio_file(self, row) -> str:
        return join(self._audio_root(), row["audio"])

    def _get_frame_files(self, row) -> List[str]:
        return [join(self._frame_root(), row["image"])]

    def _get_semseg_file(self, row) -> str:
        return join(self._semseg_root(), row["seg"])

    def _get_embed_file(self, row) -> str:
        return join(self._embed_root(), row["image"].replace(".jpg", ".npz"))

    def num_classes(self):
        return 3662


class ADE20KPromptedBase(AVDataset):

    def _expected_num_frames(self):
        return 1

    def default_target_length(self) -> int:
        return 20

    def _frame_root(self) -> str:
        return join(self.root, "frames")

    def _audio_root(self) -> str:
        return join(self.root, "audio")

    def _semseg_root(self) -> str:
        return join(self.root, "annotations")

    def _embed_root(self) -> str:
        return join(self.root, "embedding", self.audio_embed_model)

    def _get_frame_files(self, row) -> List[str]:
        return [join(self._frame_root(), row["image_location"])]

    def _get_semseg_file(self, row) -> str:
        return join(self._semseg_root(), row["image_location"].replace(".jpg", "_seg.png"))

    def _get_embed_file(self, row) -> str:
        return join(self._embed_root(), row["image_location"].replace(".jpg", ".npz"))

    def num_classes(self):
        return 3662

    def _missing_threshold(self) -> float:
        return 0.0


class ADE20KSpeechPrompted(ADE20KPromptedBase):

    def _get_audio_file(self, row) -> str:
        return join(self._audio_root(), row["speech_prompt_file"].split("/")[-1])

    def _dataset_folder(self) -> str:
        return "ADE20KSpeechPrompted"

    def _audio_root(self) -> str:
        # return join(self.root, "audio-noise-10") # TODO Remove
        return join(self.root, "audio")  # TODO Remove

    def _load_info(self, split) -> pd.DataFrame:
        df = pd.read_csv(join(self.root, "prompted_segmentation.csv"))
        df = df[df["speech_prompt_file"].apply(lambda s: isinstance(s, str))]
        df = df[df["ade_class_id"].apply(lambda id: id != 0)]
        df["id"] = df["image_location"]
        return df


class ADE20KSoundPrompted(ADE20KPromptedBase):

    def _get_audio_file(self, row) -> str:
        return join(self._audio_root(), row["vggsound_file"].split("/")[-1])

    def _dataset_folder(self) -> str:
        return "ADE20KSoundPrompted"

    def _load_info(self, split) -> pd.DataFrame:
        df = pd.read_csv(join(self.root, "prompted_segmentation.csv"))
        df = df[df["vggsound_file"].apply(lambda s: isinstance(s, str))]
        df = df[df["ade_class_id"].apply(lambda id: id != 0)]
        df["id"] = df["image_location"]
        return df


class PlacesAndAudioSet(Dataset):

    def __init__(self, **kwargs):
        self.ds1 = PlacesAudio(**kwargs, n_frames=1)
        self.ds2 = AudioSet(**kwargs, n_frames=1)

    def __len__(self):
        return len(self.ds1)

    def __getitem__(self, item):
        if torch.rand(1).item() > .5:
            d = self.ds2[torch.randint(0, len(self.ds2) - 1, size=(1,)).item()]
            if d is not None:
                d["source"] = 1
        else:
            d = self.ds1[item]
            if d is not None:
                d["source"] = 0
        return d


class AVDataModule(pl.LightningDataModule):
    def __init__(self,

                 dataset_name,

                 load_size,

                 image_aug,

                 audio_aug,

                 extra_audio_masking,

                 audio_model_type,

                 pytorch_data_dir,

                 use_cached_embs,

                 batch_size,

                 num_workers,

                 audio_level,

                 neg_audio,

                 data_for_plotting,

                 use_original_val_set,

                 use_extra_val_sets,

                 quad_mixup,

                 bg_mixup,

                 patch_mixup,

                 patch_size,

                 **kwargs):

        super().__init__()
        self.dataset_name = dataset_name
        self.load_size = load_size
        self.image_aug = image_aug
        self.audio_aug = audio_aug
        self.extra_audio_masking = extra_audio_masking
        self.audio_model_type = audio_model_type
        self.pytorch_data_dir = pytorch_data_dir
        self.use_cached_embs = use_cached_embs
        self.batch_size = batch_size
        self.num_workers = num_workers
        self.data_for_plotting = data_for_plotting
        self.audio_level = audio_level
        self.neg_audio = neg_audio

        self.quad_mixup = quad_mixup
        self.bg_mixup = bg_mixup
        self.patch_mixup = patch_mixup
        self.patch_size = patch_size

        self.loader_args = dict(
            num_workers=self.num_workers,
            batch_size=self.batch_size,
        )
        self.save_hyperparameters()
        self.extra_args = kwargs

        self.use_original_val_set = use_original_val_set
        self.use_extra_val_sets = use_extra_val_sets

    def maybe_unpack(self, remove_source):
        targets = [
            (
                join(self.pytorch_data_dir, "audioset-subset", "frame_archives"),
                join(self.pytorch_data_dir, "audioset-subset", "frames"),
                1
            ),
            (
                join(self.pytorch_data_dir, "audioset-raw", "frame_archives"),
                join(self.pytorch_data_dir, "audioset-raw", "frames"),
                4
            ),
            (
                join(self.pytorch_data_dir, "audioset-raw", "audio_archives"),
                join(self.pytorch_data_dir, "audioset-raw", "audio"),
                1
            ),

        ]

        for (archive_dir, target_dir, n_parts) in targets:
            if not os.path.exists(target_dir) and os.path.exists(archive_dir):
                print(f"Could not find {target_dir}, attempting to unpack archives")
                if os.path.exists(archive_dir):
                    untar_all(archive_dir, target_dir, remove_source)
                else:
                    raise RuntimeError(f"Could not find archive folder: {archive_dir}")

    def get_dataset_by_name(self, name, stage, data_for_plotting, n_frames=None):

        if name == "vggss":
            resize_op = T.Resize((self.load_size, self.load_size), Image.BILINEAR)
        else:
            resize_op = T.Resize(self.load_size, Image.BILINEAR)

        img_transform = T.Compose([
            resize_op,
            T.CenterCrop(self.load_size),
            T.ToTensor(),
            norm])

        if self.image_aug:
            train_img_transform = T.Compose([
                T.RandomResizedCrop(self.load_size),
                T.RandomHorizontalFlip(),
                T.ColorJitter(.2, .2, .2, .2),
                T.RandomGrayscale(),
                T.ToTensor(),
                norm])
            val_img_transform = img_transform
        else:
            train_img_transform = img_transform
            val_img_transform = img_transform

        if self.audio_aug:
            train_audio_aug = True
            val_audio_aug = False
        else:
            train_audio_aug = False
            val_audio_aug = False

        if self.audio_model_type == "hubert":
            from featurizers.Hubert import HubertAudioTransform
            audio_transform = HubertAudioTransform()
        else:
            audio_transform = None

        if self.audio_model_type == "passt":
            sample_rate = 32000
        else:
            sample_rate = 16000

        if not self.use_cached_embs:
            if self.audio_model_type == "hubert":
                self.extra_args["use_audio"] = True
            elif self.audio_model_type in {"audiomae", "audiomae-finetuned", "cavmae", "cavmae-mixed", "imagebind"}:
                self.extra_args["use_spec"] = True
            elif self.audio_model_type == "davenet":
                self.extra_args["use_audio"] = True
                self.extra_args["use_davenet_spec"] = True
            elif self.audio_model_type == "fnac":
                self.extra_args["use_audio"] = True
                self.extra_args["use_fnac_spec"] = True
            else:
                raise ValueError(f"Unknown audio model type {self.audio_model_type}")

            if self.audio_model_type == "cavmae" or self.audio_model_type == "cavmae-mixed":
                self.extra_args["spec_mean"] = -5.081
                self.extra_args["spec_std"] = 4.4849
            elif self.audio_model_type == "imagebind":
                self.extra_args["spec_mean"] = -4.268
                self.extra_args["spec_std"] = 9.138

        # if self.audio_model_type in {"audiomae", "audiomae-finetune", "cavmae"} \
        #         and "override_target_length" not in self.extra_args:
        if "override_target_length" not in self.extra_args:
            self.extra_args["override_target_length"] = 10

        data_args = dict(
            root=self.pytorch_data_dir,
            use_frames=True,
            audio_transform=audio_transform,
            sample_rate=sample_rate,
            audio_level=self.audio_level,
            **self.extra_args
        )

        if n_frames is not None:
            data_args["n_frames"] = n_frames

        train_args = dict(
            frame_transform=train_img_transform,
            extra_audio_masking=self.extra_audio_masking,
            neg_audio=self.neg_audio,
            quad_mixup=self.quad_mixup,
            bg_mixup=self.bg_mixup,
            patch_mixup=self.patch_mixup,
            patch_size=self.patch_size,
            audio_aug=train_audio_aug
        )
        val_args = dict(
            frame_transform=val_img_transform,
            audio_aug=val_audio_aug
        )

        if data_for_plotting:
            val_args["use_audio"] = True
            val_args["use_spec"] = True

        if "ade" in name:
            label_transform = T.Compose([
                T.Resize(self.load_size, Image.NEAREST),
                T.CenterCrop(self.load_size),
                prep_ade_label
            ])
        else:
            label_transform = T.Compose([
                T.Resize(self.load_size, Image.NEAREST),
                T.CenterCrop(self.load_size)
            ])

        val_args["use_audio"] = True
        val_args["label_transform"] = label_transform

        if name == "places-audio":
            dataset_constructor = PlacesAudio
        elif name == "mixed-full":
            dataset_constructor = PlacesAndAudioSet
        elif name == "audio-set-full":
            dataset_constructor = AudioSet
        elif name == "audio-set-eval":
            dataset_constructor = AudioSetEval
        elif name == "ade":
            val_args["use_semseg"] = True
            dataset_constructor = ADE20K
        elif name == "ade-speech-prompted":
            val_args["use_semseg"] = True
            dataset_constructor = ADE20KSpeechPrompted
        elif name == "ade-sound-prompted":
            val_args["use_semseg"] = True
            dataset_constructor = ADE20KSoundPrompted
        else:
            raise ValueError(f"Unknown dataset name {name}")

        data_args["use_audio_embed"] = self.use_cached_embs
        data_args["audio_embed_model"] = self.audio_model_type

        if stage == "full":
            val_dataset = dataset_constructor(split="val", **{**data_args, **val_args})
            train_dataset = dataset_constructor(split="train", **{**data_args, **val_args})
            return ConcatDataset([train_dataset, val_dataset])
        elif stage == "fit":
            return dataset_constructor(split="train", **{**data_args, **train_args})
        elif stage == "validate":
            return dataset_constructor(split="val", **{**data_args, **val_args})
        else:
            raise ValueError(f"Unknown stage: {stage}")

    def _maybe_subset(self, dataset, length):
        if len(dataset) > length and self.dataset_name not in {"ade-sound-prompted", "ade-speech-prompted", "vggss"}:
            print("Using a subset of validation data")
            return Subset(dataset, generate_subset(len(dataset), length))
        else:
            print("Not using val subset")
            return dataset

    def _make_val_datasets(self):
        val_sets = []
        if self.use_original_val_set:
            val_sets.append(self._maybe_subset(self.get_dataset_by_name(
                self.dataset_name, "validate", self.data_for_plotting), 1000))

        if self.use_extra_val_sets:
            val_sets.append(self._maybe_subset(self.get_dataset_by_name(
                "places-audio", "validate", self.data_for_plotting), 1000))
            val_sets.append(self._maybe_subset(self.get_dataset_by_name(
                "audio-set-eval", "validate", False, n_frames=1), 1000))
            val_sets.append(self.get_dataset_by_name(
                "ade-speech-prompted", "validate", True))
            val_sets.append(self.get_dataset_by_name(
                "ade-sound-prompted", "validate", self.data_for_plotting))

        return val_sets

    def setup(self, stage: str):
        if stage == "full":
            self.full_dataset = self.get_dataset_by_name(self.dataset_name, stage, self.data_for_plotting)
        elif stage == "fit":
            self.train_dataset = self.get_dataset_by_name(self.dataset_name, stage, self.data_for_plotting)
            self.val_datasets = self._make_val_datasets()
        elif stage == "validate":
            self.val_datasets = self._make_val_datasets()
        else:
            raise ValueError(f"Unknown stage: {stage}")

    def train_dataloader(self):
        return DataLoader(self.train_dataset, shuffle=True, **self.loader_args, collate_fn=custom_coallate)

    def subsampled_train_dataloader(self, k=5000):
        if len(self.train_dataset) > k:
            ds = Subset(self.train_dataset, generate_subset(len(self.train_dataset), k))
        else:
            ds = self.train_dataset

        return DataLoader(ds, shuffle=True, **self.loader_args, collate_fn=custom_coallate)

    def val_dataloader(self):
        return [
            DataLoader(dataset, shuffle=False, **self.loader_args, collate_fn=custom_coallate)
            for dataset in self.val_datasets
        ]

    def full_dataloader(self):
        return DataLoader(self.full_dataset, shuffle=False, **self.loader_args, collate_fn=custom_coallate)


def generate_subset(n, batch, seed=0):
    np.random.seed(seed)
    return np.random.permutation(n)[:batch]


def prep_ade_label(img):
    seg = np.array(img)
    class_labels = (seg[:, :, 0] / 10).astype(np.int32) * 256 + (seg[:, :, 1].astype(np.int32))
    return class_labels


def maybe_replace(e, not_none):
    if e is not None:
        return e
    else:
        print("Warning found a None in the dataset indicitive of a loading failure, replacing it with another item")
        return not_none[0]


empty_caption = {
    "words": [],
    "start": [],
    "end": [],
}


def custom_coallate(l):
    if l is None:
        return l

    not_none = [e for e in l if e is not None]
    assert len(not_none) > 0

    l = [maybe_replace(e, not_none) for e in l]

    to_merge = {}

    def pop_or_default(dict, k, default):
        if k in dict:
            return dict.pop(k)
        else:
            print(f"WARNING: Could not find {k}, using {default}")
            return default

    if "caption" in l[0]:
        to_merge["caption"] = [pop_or_default(l[i], "caption", empty_caption) for i in range(len(l))]

    if "text" in l[0]:
        to_merge["text"] = [pop_or_default(l[i], "text", "") for i in range(len(l))]

    result = default_collate(l)

    return {**result, **to_merge}


if __name__ == "__main__":

    from featurizers.Hubert import HubertAudioTransform

    pytorch_data_dir = "/pytorch-data"
    dataset_constructor = PlacesAudio
    split = "val"

    img_transform = T.Compose([
        T.Resize(224, Image.BILINEAR),
        T.CenterCrop(224),
        T.ToTensor(),
        norm])

    video_transform = T.Compose([
        T.Resize(224, Image.BILINEAR),
        T.CenterCrop(224),
        norm])

    label_transform = T.Compose([
        T.Resize(224, Image.NEAREST),
        T.CenterCrop(224)
    ])

    audio_transform = HubertAudioTransform()

    data_args = dict(
        root=pytorch_data_dir,
        frame_transform=img_transform,
        use_frames=True,
        use_spec=True,
        use_audio=True,
        use_caption=False,
        use_semseg=False,
        label_transform=label_transform,
        audio_transform=audio_transform,
        use_audio_embed=False,
        audio_embed_model="audiomae",
        extra_audio_masking=False,
        neg_audio=False,
        override_target_length=10,
        audio_level=False,
        quad_mixup=.3,
        patch_mixup=.3,
        bg_mixup=.3,
    )


    def return_datasets(dataset_constructor, split):
        dataset = dataset_constructor(split=split, **data_args)
        return dataset


    train_ds = return_datasets(dataset_constructor, split)

    print(len(train_ds))
    train_loader = DataLoader(train_ds, batch_size=1, shuffle=False, num_workers=36, collate_fn=custom_coallate)
    for batch in tqdm(train_loader):
        pass