Spaces:
Running
Running
File size: 45,951 Bytes
e6d4b46 67b4506 e6d4b46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 |
import glob
import os
from abc import ABC, abstractmethod
from glob import glob
from os.path import join
from pathlib import Path
from typing import List, Set
import audioread
import numpy as np
import pandas as pd
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
import torchaudio
import torchvision.transforms as T
from PIL import Image
from torch.utils.data import Dataset, DataLoader, default_collate, Subset, ConcatDataset
from tqdm import tqdm
from DenseAV.denseav.constants import AUDIO_MASK, AUDIO_POS_MASK, IMAGE_MASK, IMAGE_INPUT
from DenseAV.denseav.data.make_tarballs import untar_all
from DenseAV.denseav.shared import norm, prep_waveform
def sample_choice(choices, probs):
# Check that probabilities sum to 1 and are non-negative
assert sum(probs) == 1, "Probabilities must sum to 1"
assert all(p >= 0 for p in probs), "Probabilities cannot be negative"
# Convert probs to a tensor
probs_tensor = torch.tensor(probs)
# Sample a choice according to the probabilities
index = torch.multinomial(probs_tensor, 1).item()
# Return the sampled choice
return choices[index]
def grid_frames(frames):
top_row = torch.cat([frames[0], frames[1]], dim=2)
bottom_row = torch.cat([frames[2], frames[3]], dim=2)
return torch.cat([top_row, bottom_row], dim=3)
def create_mixed_image(pos_frame, neg_frame, patch_size):
# Step 1: Check that patch_size evenly divides the image dimensions
b, c, h, w = pos_frame.shape
assert h % patch_size == 0 and w % patch_size == 0, "Patch size must evenly divide image dimensions"
# Step 2: Create a random binary mask with the same number of patches as the image
mask = torch.randint(0, 2, (b, 1, h // patch_size, w // patch_size))
# Step 3: Create a new image using patches from pos_frame and neg_frame according to the mask
# Upscale the mask to the size of the image
mask_upscaled = F.interpolate(mask.to(torch.float32), scale_factor=patch_size)
# Use the mask to create a mixed frame
mixed_frame = mask_upscaled * pos_frame + (1 - mask_upscaled) * neg_frame
return mixed_frame, mask_upscaled
class AVDataset(ABC, Dataset):
@abstractmethod
def _dataset_folder(self) -> str:
pass
@abstractmethod
def _load_info(self, split) -> pd.DataFrame:
"""
This function should return a dataframe with at least a column "id"
@return:
"""
pass
@abstractmethod
def _missing_threshold(self) -> float:
pass
@abstractmethod
def default_target_length(self) -> int:
pass
def target_length(self):
if self.override_target_length is not None:
return self.override_target_length
else:
return self.default_target_length()
def _frame_root(self) -> str:
return join(self.root, "frames", self.split)
def _video_root(self) -> str:
return join(self.root, "videos", self.split)
def _audio_root(self) -> str:
return join(self.root, "audio", self.split)
def _semseg_root(self) -> str:
return join(self.root, "annotations", self.split)
def _embed_root(self) -> str:
return join(self.root, "embedding", self.audio_embed_model, self.split)
def _label_root(self) -> str:
return join(self.root, "pseudo-labels")
def _hn_root(self) -> str:
return join(self.root, "hard_negatives")
def _all_video_files(self) -> Set[str]:
return set(str(p) for p in Path(join(self._video_root())).rglob('*'))
def _all_frame_files(self) -> Set[str]:
return set(str(p) for p in Path(join(self._frame_root())).rglob('*'))
def _all_audio_files(self) -> Set[str]:
return set(str(p) for p in Path(join(self._audio_root())).rglob('*'))
def _all_embed_files(self) -> Set[str]:
return set(str(p) for p in Path(join(self._embed_root())).rglob('*'))
def _get_frame_files(self, row) -> List[str]:
return [self._frame_root() + "/" + row["id"] + f"_{i}.jpg" for i in range(self._expected_num_frames())]
def _get_semseg_file(self, row) -> str:
raise NotImplementedError("Class has not implemented _get_semseg_files")
def _get_audio_file(self, row) -> str:
return self._audio_root() + "/" + row["id"] + ".mp3"
def _get_video_file(self, row) -> str:
return self._video_root() + "/" + row["id"] + ".mp4"
def _get_embed_file(self, row) -> str:
return self._embed_root() + "/" + row["id"] + ".npz"
def _add_files_to_metadata(self, df) -> pd.DataFrame:
tqdm.pandas()
if self.use_audio_embed:
df["embed_file"] = df.progress_apply(self._get_embed_file, axis=1)
if self.use_audio or self.use_spec:
df["audio_file"] = df.progress_apply(self._get_audio_file, axis=1)
if self.use_frames:
df["frame_files"] = df.progress_apply(self._get_frame_files, axis=1)
if self.use_semseg:
df["semseg_file"] = df.progress_apply(self._get_semseg_file, axis=1)
df = self._filter_valid_metadata(df)
if self.use_hn:
loaded = np.load(join(self._hn_root(), "original", f"{self.split}_hard_negatives.npz"))
df["hn0"] = [t for t in torch.tensor(loaded["indices_0"])]
df["hn1"] = [t for t in torch.tensor(loaded["indices_1"])]
return df
def _split_name(self, split):
return split
def _filter_valid_metadata(self, df: pd.DataFrame) -> pd.DataFrame:
print("MY_DIR ", list(glob(join(self.root, "*"))))
if self.use_audio_embed:
missing_embed_files = set(df['embed_file']) - self.all_embed_files
valid_audio = ~df['embed_file'].isin(missing_embed_files)
print("ALL EMBED ", len(self.all_embed_files))
elif self.use_audio or self.use_spec:
missing_audio_files = set(df['audio_file']) - self.all_audio_files
valid_audio = ~df['audio_file'].isin(missing_audio_files)
print("ALL AUDIO ", len(self.all_audio_files))
if self.use_frames:
missing_frame_files = set(
item for sublist in df['frame_files'].tolist() for item in sublist) - self.all_frame_files
valid_frames = df['frame_files'].apply(lambda x: not any(file in missing_frame_files for file in x))
print("ALL FRAMES ", len(self.all_frame_files))
df["is_valid"] = valid_audio & valid_frames
else:
df["is_valid"] = valid_audio
percent_missing = (1 - (df["is_valid"].sum() / len(df)))
assert percent_missing <= self._missing_threshold(), \
f"Too many missing files: %{round(percent_missing * 100.0, 2)}"
assert len(df) > 0, "No files found"
return df[df["is_valid"]]
def __init__(
self,
root: str,
split: str = "train",
use_frames=False,
frame_transform=None,
use_audio=False,
use_spec=False,
use_audio_embed=False,
use_hn=False,
use_caption=False,
use_semseg=False,
neg_audio=False,
use_davenet_spec=False,
use_fnac_spec=False,
n_label_frames=196,
label_transform=None,
audio_embed_model="hubert",
n_frames=1,
audio_transform=None,
audio_aug=False,
spec_transform=None,
spec_mel_bins=128,
spec_mean=-6.6268077,
spec_std=5.358466,
sample_rate=16000,
override_target_length=None,
use_tags=False,
extra_audio_masking=False,
audio_level=False,
quad_mixup=0.0,
bg_mixup=0.0,
patch_mixup=0.0,
patch_size=8,
):
super(AVDataset).__init__()
self.pytorch_data_dir = root
self.split = self._split_name(split)
self.root = join(root, self._dataset_folder())
self.use_frames = use_frames
self.frame_transform = frame_transform
self.use_audio = use_audio
self.use_spec = use_spec
self.use_audio_embed = use_audio_embed
self.use_davenet_spec = use_davenet_spec
self.use_fnac_spec = use_fnac_spec
self.use_hn = use_hn
self.use_caption = use_caption
self.label_transform = label_transform
self.audio_embed_model = audio_embed_model
self.audio_aug = audio_aug
self.n_frames = n_frames
self.audio_transform = audio_transform
self.spec_transform = spec_transform
self.spec_mel_bins = spec_mel_bins
self.spec_mean = spec_mean
self.spec_std = spec_std
self.use_semseg = use_semseg
self.override_target_length = override_target_length
self.use_tags = use_tags
self.extra_audio_masking = extra_audio_masking
self.neg_audio = neg_audio
self.audio_level = audio_level
self.quad_mixup = quad_mixup
self.bg_mixup = bg_mixup
self.patch_mixup = patch_mixup
self.patch_size = patch_size
self.sample_rate = sample_rate
self.n_label_frames = n_label_frames
if self.use_audio_embed:
self.all_embed_files = self._all_embed_files()
if self.use_audio or self.use_spec:
self.all_audio_files = self._all_audio_files()
if self.use_frames:
self.all_frame_files = self._all_frame_files()
self.metadata = self._add_files_to_metadata(self._load_info(self.split))
assert len(self.metadata) > 0
def __len__(self):
return len(self.metadata)
@abstractmethod
def _expected_num_frames(self) -> int:
pass
def get_audio_mask(self, real_length, padded_length, target_size):
if not isinstance(real_length, torch.Tensor):
real_length = torch.tensor(real_length)
padded_length = torch.tensor(padded_length)
n_frames = ((real_length / padded_length) * target_size).to(torch.int64)
oh = F.one_hot(n_frames, num_classes=target_size + 1)
if len(oh.shape) == 1:
oh = oh.unsqueeze(0)
return (1 - torch.cumsum(oh, dim=1))[:, :-1].to(torch.bool)
def _base_get_item(self, item):
id = self.metadata["id"].iloc[item]
data_dict = {"metadata": {"id": id, "index": item}}
if self.use_tags and "tags" in self.metadata:
tags = torch.tensor(self.metadata["tags"].iloc[item])
tag_oh = torch.zeros(self.num_tags, dtype=torch.float32)
tag_oh[tags] += 1
data_dict["tags"] = tag_oh
if self.use_audio or self.use_spec:
audio_file = self.metadata["audio_file"].iloc[item]
data_dict["metadata"]["audio_file"] = audio_file
loaded_waveform, obs_sr = torchaudio.load(audio_file)
loaded_waveform = loaded_waveform[0]
if self.neg_audio:
neg_audio_file = self.metadata["audio_file"].iloc[torch.randint(0, len(self), size=(1,)).item()]
data_dict["metadata"]["neg_audio_file"] = neg_audio_file
neg_waveform, neg_obs_sr = torchaudio.load(neg_audio_file)
neg_waveform = neg_waveform[0]
else:
neg_waveform, neg_obs_sr = None, None
(waveform,
spectrogram,
audio_length,
total_length,
original_length,
mask,
pos_mask) = prep_waveform(
loaded_waveform,
obs_sr,
self.target_length(),
self.spec_mel_bins,
self.spec_mean,
self.spec_std,
self.sample_rate,
self.use_spec,
False,
self.extra_audio_masking,
neg_waveform,
neg_obs_sr,
self.audio_level,
self.audio_aug
)
if self.spec_transform is not None and spectrogram is not None:
spectrogram = self.spec_transform(spectrogram)
if self.audio_transform is not None:
waveform = self.audio_transform(waveform)
data_dict["audio"] = waveform
data_dict[AUDIO_MASK] = mask
data_dict[AUDIO_POS_MASK] = pos_mask
data_dict["audio_length"] = audio_length
data_dict["original_length"] = original_length
data_dict["total_length"] = total_length
if spectrogram is not None:
data_dict["spec"] = spectrogram
if mask.mean() < .04:
return None
if self.use_davenet_spec:
from data.DavenetUtilities import davenet_load_audio
audio_file = self.metadata["audio_file"].iloc[item]
spec, n_frames = davenet_load_audio(audio_file)
data_dict["davenet_spec"] = spec
if self.use_fnac_spec:
from featurizers.FNACAVL import load_spectrogram as fnac_load_spectrogram
audio_file = self.metadata["audio_file"].iloc[item]
data_dict["fnac_spec"] = fnac_load_spectrogram(audio_file, 3)
if self.use_audio_embed:
loaded = np.load(self.metadata["embed_file"].iloc[item])
data_dict["audio_emb"] = loaded["feat"]
data_dict["audio_length"] = loaded["audio_length"]
data_dict["total_length"] = loaded["total_length"]
data_dict["original_length"] = loaded["original_length"]
data_dict[AUDIO_MASK] = self.get_audio_mask(
data_dict["audio_length"],
data_dict["total_length"],
data_dict["audio_emb"].shape[-1]) \
.squeeze().to(torch.float32)
data_dict[AUDIO_POS_MASK] = data_dict[AUDIO_MASK].to(torch.float32)
if self.use_frames:
def get_frames(item):
file_group = self.metadata["frame_files"].iloc[item]
if self.n_frames is not None:
selected_frames = torch.randperm(len(file_group))[:self.n_frames]
file_group = [file_group[i] for i in selected_frames]
data_dict["metadata"]["frame_files"] = file_group
images = [Image.open(file).convert("RGB") for file in file_group]
if self.frame_transform is not None:
images = torch.cat([self.frame_transform(img).unsqueeze(0) for img in images], dim=0)
return images, file_group
no_mixup = 1.0 - (self.bg_mixup + self.quad_mixup + self.patch_mixup)
mixup_type = sample_choice(
["quad", "bg", "patch", None],
[self.quad_mixup, self.bg_mixup, self.patch_mixup, no_mixup]
)
if mixup_type == "quad":
indices = [item] + torch.randint(0, len(self), size=(3,)).numpy().tolist()
frames_and_files = [get_frames(i) for i in indices]
file_group = frames_and_files[0][1]
perm = torch.randperm(4)
all_frames = [F.interpolate(frames_and_files[i][0], scale_factor=0.5, mode="bilinear") for i in
perm]
b, c, h, w = all_frames[0].shape
indices = [indices[p] for p in perm]
masks = [(torch.ones(b, 1, h, w) if index == item else torch.zeros(b, 1, h, w)) for index in
indices]
data_dict[IMAGE_INPUT] = grid_frames(all_frames)
data_dict[IMAGE_MASK] = grid_frames(masks)
elif mixup_type == "bg":
neg_item = torch.randint(0, len(self), size=(1,)).item()
neg_frame, _ = get_frames(neg_item)
pos_frame, file_group = get_frames(item)
b, c, h, w = neg_frame.shape
neg_mask = torch.zeros(b, 1, h, w)
pos_mask = torch.ones(b, 1, h, w)
if torch.rand(1).item() > 0.5:
bg_frame = neg_frame
bg_mask = neg_mask
fg_frame = F.interpolate(pos_frame, scale_factor=0.5, mode="bilinear")
fg_mask = F.interpolate(pos_mask, scale_factor=0.5, mode="bilinear")
else:
bg_frame = pos_frame
bg_mask = pos_mask
fg_frame = F.interpolate(neg_frame, scale_factor=0.5, mode="bilinear")
fg_mask = F.interpolate(neg_mask, scale_factor=0.5, mode="bilinear")
start_h = torch.randint(0, h // 2, size=(1,))
start_w = torch.randint(0, w // 2, size=(1,))
bg_frame[:, :, start_h:start_h + fg_frame.shape[2], start_w:start_w + fg_frame.shape[3]] = fg_frame
bg_mask[:, :, start_h:start_h + fg_frame.shape[2], start_w:start_w + fg_frame.shape[3]] = fg_mask
data_dict["frames"] = bg_frame
data_dict["image_masks"] = bg_mask
elif mixup_type == "patch":
neg_item = torch.randint(0, len(self), size=(1,)).item()
neg_frame, _ = get_frames(neg_item)
pos_frame, file_group = get_frames(item)
frames, masks = create_mixed_image(pos_frame, neg_frame, self.patch_size)
data_dict["frames"] = frames
data_dict["image_masks"] = masks
elif mixup_type is None:
frames, file_group = get_frames(item)
data_dict["frames"] = frames
b, c, h, w = frames.shape
data_dict["image_masks"] = torch.ones(b, 1, h, w)
else:
raise ValueError(f"Unknown mixup type {mixup_type}")
if "original_length" in data_dict:
if self._expected_num_frames() == 1:
frame_nums = torch.tensor([0])
else:
frame_nums = torch.tensor([
int(f.split("/")[-1].split("_")[-1].split(".")[0]) for f in file_group])
data_dict["frame_nums"] = frame_nums
frame_fracs = ((frame_nums + .5) / (self._expected_num_frames()))
frame_position = (frame_fracs * data_dict["original_length"]) / data_dict["total_length"]
data_dict["frame_position"] = frame_position
if self.use_caption:
if "word" in self.metadata:
words = self.metadata["word"].iloc[item]
start = self.metadata["start"].iloc[item]
end = self.metadata["end"].iloc[item]
if isinstance(words, float):
words = [""]
start = [0.0]
end = [-1.0]
data_dict["caption"] = {
"words": words,
"start": start,
"end": end,
}
if "text" in self.metadata:
data_dict["text"] = self.metadata["text"].iloc[item]
if self.use_semseg:
semseg_path = join(self._semseg_root(), self.metadata["semseg_file"].iloc[item])
semseg = Image.open(semseg_path)
if self.label_transform is not None:
semseg = np.array(self.label_transform(semseg))
data_dict["semseg"] = semseg
data_dict["metadata"]["semseg_file"] = semseg_path
# if hasattr(self, "num_classes"):
# data_dict["num_pixels_per_class"] = F.one_hot(
# torch.tensor(semseg).to(torch.int64), self.num_classes() + 1).sum(dim=[0, 1])
return data_dict
def __getitem__(self, item):
try:
data_dict = self._base_get_item(item)
if self.use_hn:
indices = torch.cat([self.metadata["hn0"].iloc[item], self.metadata["hn1"].iloc[item]], dim=0)
neg_index = indices[torch.randint(0, indices.shape[0], (1,))]
negative_dict = self._base_get_item(neg_index)
data_dict["negatives"] = negative_dict
return data_dict
except (audioread.exceptions.NoBackendError, EOFError) as e:
# raise e
bad_path = self.metadata["audio_file"].iloc[item]
print(e)
print(f"Removing bad audio file {bad_path}")
# os.remove(bad_path)
return None
except ValueError as e:
# raise e
bad_path = self.metadata["audio_file"].iloc[item]
if "Input signal length=0" in str(e):
print(e)
print(f"Removing bad file {bad_path} due to input signal length=0")
# os.remove(bad_path)
return None
except OSError as e:
# raise e
bad_paths = self.metadata["frame_files"].iloc[item]
for bad_path in bad_paths:
print(e)
print(f"Removing bad frame file {bad_path}")
return None
except RuntimeError as e:
# raise e
bad_path = self.metadata["audio_file"].iloc[item]
print(e)
print(f"Removing bad audio file {bad_path}")
# os.remove(bad_path)
return None
class PlacesAudio(AVDataset):
def _load_info(self, split) -> pd.DataFrame:
df = pd.read_json(join(os.path.dirname(self._audio_root()), "metadata", f"{split}.json"))
df["id"] = df["data"].apply(lambda d: d["wav"][5:-4])
if self.use_caption:
if split == "train":
word_df = pd.read_json(
join(os.path.dirname(self._audio_root()), "metadata", f"word-alignment-{split}.json")
)
else:
word_df = pd.read_csv(
join(os.path.dirname(self._audio_root()), "metadata", f"word-alignment-{split}.csv")) \
.groupby("id").aggregate(lambda g: list(g)).reset_index().drop("Unnamed: 0", axis=1)
df = pd.merge(df, word_df, on="id", how="outer")
return df
def _missing_threshold(self) -> float:
# return 0.0
return 0.97 # TODO fix
def _expected_num_frames(self):
return 1
def default_target_length(self) -> int:
return 20
def _frame_root(self) -> str:
return join(os.path.dirname(self.root), "places_subset")
def _audio_root(self) -> str:
return join(self.root, "wavs")
def _embed_root(self) -> str:
return join(self.root, "embedding", self.audio_embed_model)
def _dataset_folder(self) -> str:
return "PlacesAudio_400k_distro"
def _get_audio_file(self, row) -> str:
return join(self._audio_root(), row["id"] + ".wav")
def _get_frame_files(self, row) -> List[str]:
return [join(self._frame_root(), row["data"]["image"])]
def _get_embed_file(self, row) -> str:
return join(self._embed_root(), row["id"] + ".npz")
class AudioSet(AVDataset):
def _expected_num_frames(self):
return 10
def default_target_length(self) -> int:
return 20
def _dataset_folder(self) -> str:
return "audioset-raw"
def _missing_threshold(self) -> float:
if self.split == "val" or self.split == "test":
return 0.02
else:
return 0.17
def train_seg_file(self):
return "unbalanced_train_segments.csv"
def _load_info(self, split) -> pd.DataFrame:
if split == "train":
df = pd.read_csv(join(self.root, "metadata", self.train_seg_file()))
elif split == "val" or split == "test":
df = pd.read_csv(join(self.root, "metadata", "eval_segments_subset.csv"))
else:
raise ValueError(f"Unknown split {split}")
labels = pd.read_csv(join(self.root, "metadata", "class_labels_indices.csv"))
mid_to_index = dict(zip(labels["mid"], labels["index"]))
df["tags"] = df["positive_labels"].apply(lambda l: [mid_to_index[e] for e in l.strip('"').split(",")])
self.num_tags = max(*[i for k, i in mid_to_index.items()]) + 1
df["id"] = df.apply(lambda r: f"{r.YTID}_{r.start_seconds}_{r.end_seconds}", axis=1)
return df
def _frame_root(self) -> str:
return join(self.root, "frames")
def _audio_root(self) -> str:
return join(self.root, "audio")
def _all_frame_files(self) -> Set[str]:
frame_files = set()
for entry in os.scandir(self._frame_root()):
if entry.is_file():
frame_files.add(entry.path)
elif entry.is_dir():
for subentry in os.scandir(entry.path):
if subentry.is_file():
frame_files.add(subentry.path)
return frame_files
def _all_audio_files(self) -> Set[str]:
return set(entry.path for entry in os.scandir(self._audio_root()) if entry.is_file())
def _all_embed_files(self) -> Set[str]:
return set(entry.path for entry in os.scandir(self._embed_root()) if entry.is_file())
def _embed_root(self) -> str:
return join(self.root, "embedding", self.audio_embed_model)
def prefix(self):
return ""
def _get_audio_file(self, row) -> str:
return f"{self.root}/audio/{self.prefix()}{row.id}.mp3"
def _get_frame_files(self, row) -> List[str]:
return [f"{self.root}/frames/frame_{fn}/{self.prefix()}{row.id}.jpg" for fn in range(10)]
def _get_embed_file(self, row) -> str:
return f"{self.root}/embedding/{self.audio_embed_model}/{self.prefix()}{row.id}.npz"
class AudioSetEval(AudioSet):
def _dataset_folder(self) -> str:
return "audioset-eval"
def _get_frame_files(self, row) -> List[str]:
base_path = f"{self.root}/frames/{self.prefix()}{row.id}_"
return [base_path + f"{fn}.jpg" for fn in range(10)]
def prefix(self):
return ""
class ADE20K(AVDataset):
def _split_name(self, split):
if split == "val":
return "validation"
elif split == "train":
return "training"
else:
raise ValueError(f"Unknown split name {split}")
def _load_info(self, split) -> pd.DataFrame:
df = pd.read_json(join(self.root, "metadata_with_caption_dedup.json"))
df["id"] = df["image"]
df = df[df["image"].apply(lambda f: f.split("/")[0] == split)]
if self.use_caption:
df["word"] = df["caption"].apply(lambda c: c["words"])
df["start"] = df["caption"].apply(lambda c: c["start"])
df["end"] = df["caption"].apply(lambda c: c["end"])
df["text"] = df["word"].apply(lambda l: " ".join(l))
return df
def _missing_threshold(self) -> float:
return 0.03
def _expected_num_frames(self):
return 1
def default_target_length(self) -> int:
return 20
def _dataset_folder(self) -> str:
return "ADE20K"
def _frame_root(self) -> str:
return join(self.root, "frames")
def _audio_root(self) -> str:
return join(self.root, "audio")
def _semseg_root(self) -> str:
return join(self.root, "annotations")
def _embed_root(self) -> str:
return join(self.root, "embedding", self.audio_embed_model)
def _get_audio_file(self, row) -> str:
return join(self._audio_root(), row["audio"])
def _get_frame_files(self, row) -> List[str]:
return [join(self._frame_root(), row["image"])]
def _get_semseg_file(self, row) -> str:
return join(self._semseg_root(), row["seg"])
def _get_embed_file(self, row) -> str:
return join(self._embed_root(), row["image"].replace(".jpg", ".npz"))
def num_classes(self):
return 3662
class ADE20KPromptedBase(AVDataset):
def _expected_num_frames(self):
return 1
def default_target_length(self) -> int:
return 20
def _frame_root(self) -> str:
return join(self.root, "frames")
def _audio_root(self) -> str:
return join(self.root, "audio")
def _semseg_root(self) -> str:
return join(self.root, "annotations")
def _embed_root(self) -> str:
return join(self.root, "embedding", self.audio_embed_model)
def _get_frame_files(self, row) -> List[str]:
return [join(self._frame_root(), row["image_location"])]
def _get_semseg_file(self, row) -> str:
return join(self._semseg_root(), row["image_location"].replace(".jpg", "_seg.png"))
def _get_embed_file(self, row) -> str:
return join(self._embed_root(), row["image_location"].replace(".jpg", ".npz"))
def num_classes(self):
return 3662
def _missing_threshold(self) -> float:
return 0.0
class ADE20KSpeechPrompted(ADE20KPromptedBase):
def _get_audio_file(self, row) -> str:
return join(self._audio_root(), row["speech_prompt_file"].split("/")[-1])
def _dataset_folder(self) -> str:
return "ADE20KSpeechPrompted"
def _audio_root(self) -> str:
# return join(self.root, "audio-noise-10") # TODO Remove
return join(self.root, "audio") # TODO Remove
def _load_info(self, split) -> pd.DataFrame:
df = pd.read_csv(join(self.root, "prompted_segmentation.csv"))
df = df[df["speech_prompt_file"].apply(lambda s: isinstance(s, str))]
df = df[df["ade_class_id"].apply(lambda id: id != 0)]
df["id"] = df["image_location"]
return df
class ADE20KSoundPrompted(ADE20KPromptedBase):
def _get_audio_file(self, row) -> str:
return join(self._audio_root(), row["vggsound_file"].split("/")[-1])
def _dataset_folder(self) -> str:
return "ADE20KSoundPrompted"
def _load_info(self, split) -> pd.DataFrame:
df = pd.read_csv(join(self.root, "prompted_segmentation.csv"))
df = df[df["vggsound_file"].apply(lambda s: isinstance(s, str))]
df = df[df["ade_class_id"].apply(lambda id: id != 0)]
df["id"] = df["image_location"]
return df
class PlacesAndAudioSet(Dataset):
def __init__(self, **kwargs):
self.ds1 = PlacesAudio(**kwargs, n_frames=1)
self.ds2 = AudioSet(**kwargs, n_frames=1)
def __len__(self):
return len(self.ds1)
def __getitem__(self, item):
if torch.rand(1).item() > .5:
d = self.ds2[torch.randint(0, len(self.ds2) - 1, size=(1,)).item()]
if d is not None:
d["source"] = 1
else:
d = self.ds1[item]
if d is not None:
d["source"] = 0
return d
class AVDataModule(pl.LightningDataModule):
def __init__(self,
dataset_name,
load_size,
image_aug,
audio_aug,
extra_audio_masking,
audio_model_type,
pytorch_data_dir,
use_cached_embs,
batch_size,
num_workers,
audio_level,
neg_audio,
data_for_plotting,
use_original_val_set,
use_extra_val_sets,
quad_mixup,
bg_mixup,
patch_mixup,
patch_size,
**kwargs):
super().__init__()
self.dataset_name = dataset_name
self.load_size = load_size
self.image_aug = image_aug
self.audio_aug = audio_aug
self.extra_audio_masking = extra_audio_masking
self.audio_model_type = audio_model_type
self.pytorch_data_dir = pytorch_data_dir
self.use_cached_embs = use_cached_embs
self.batch_size = batch_size
self.num_workers = num_workers
self.data_for_plotting = data_for_plotting
self.audio_level = audio_level
self.neg_audio = neg_audio
self.quad_mixup = quad_mixup
self.bg_mixup = bg_mixup
self.patch_mixup = patch_mixup
self.patch_size = patch_size
self.loader_args = dict(
num_workers=self.num_workers,
batch_size=self.batch_size,
)
self.save_hyperparameters()
self.extra_args = kwargs
self.use_original_val_set = use_original_val_set
self.use_extra_val_sets = use_extra_val_sets
def maybe_unpack(self, remove_source):
targets = [
(
join(self.pytorch_data_dir, "audioset-subset", "frame_archives"),
join(self.pytorch_data_dir, "audioset-subset", "frames"),
1
),
(
join(self.pytorch_data_dir, "audioset-raw", "frame_archives"),
join(self.pytorch_data_dir, "audioset-raw", "frames"),
4
),
(
join(self.pytorch_data_dir, "audioset-raw", "audio_archives"),
join(self.pytorch_data_dir, "audioset-raw", "audio"),
1
),
]
for (archive_dir, target_dir, n_parts) in targets:
if not os.path.exists(target_dir) and os.path.exists(archive_dir):
print(f"Could not find {target_dir}, attempting to unpack archives")
if os.path.exists(archive_dir):
untar_all(archive_dir, target_dir, remove_source)
else:
raise RuntimeError(f"Could not find archive folder: {archive_dir}")
def get_dataset_by_name(self, name, stage, data_for_plotting, n_frames=None):
if name == "vggss":
resize_op = T.Resize((self.load_size, self.load_size), Image.BILINEAR)
else:
resize_op = T.Resize(self.load_size, Image.BILINEAR)
img_transform = T.Compose([
resize_op,
T.CenterCrop(self.load_size),
T.ToTensor(),
norm])
if self.image_aug:
train_img_transform = T.Compose([
T.RandomResizedCrop(self.load_size),
T.RandomHorizontalFlip(),
T.ColorJitter(.2, .2, .2, .2),
T.RandomGrayscale(),
T.ToTensor(),
norm])
val_img_transform = img_transform
else:
train_img_transform = img_transform
val_img_transform = img_transform
if self.audio_aug:
train_audio_aug = True
val_audio_aug = False
else:
train_audio_aug = False
val_audio_aug = False
if self.audio_model_type == "hubert":
from featurizers.Hubert import HubertAudioTransform
audio_transform = HubertAudioTransform()
else:
audio_transform = None
if self.audio_model_type == "passt":
sample_rate = 32000
else:
sample_rate = 16000
if not self.use_cached_embs:
if self.audio_model_type == "hubert":
self.extra_args["use_audio"] = True
elif self.audio_model_type in {"audiomae", "audiomae-finetuned", "cavmae", "cavmae-mixed", "imagebind"}:
self.extra_args["use_spec"] = True
elif self.audio_model_type == "davenet":
self.extra_args["use_audio"] = True
self.extra_args["use_davenet_spec"] = True
elif self.audio_model_type == "fnac":
self.extra_args["use_audio"] = True
self.extra_args["use_fnac_spec"] = True
else:
raise ValueError(f"Unknown audio model type {self.audio_model_type}")
if self.audio_model_type == "cavmae" or self.audio_model_type == "cavmae-mixed":
self.extra_args["spec_mean"] = -5.081
self.extra_args["spec_std"] = 4.4849
elif self.audio_model_type == "imagebind":
self.extra_args["spec_mean"] = -4.268
self.extra_args["spec_std"] = 9.138
# if self.audio_model_type in {"audiomae", "audiomae-finetune", "cavmae"} \
# and "override_target_length" not in self.extra_args:
if "override_target_length" not in self.extra_args:
self.extra_args["override_target_length"] = 10
data_args = dict(
root=self.pytorch_data_dir,
use_frames=True,
audio_transform=audio_transform,
sample_rate=sample_rate,
audio_level=self.audio_level,
**self.extra_args
)
if n_frames is not None:
data_args["n_frames"] = n_frames
train_args = dict(
frame_transform=train_img_transform,
extra_audio_masking=self.extra_audio_masking,
neg_audio=self.neg_audio,
quad_mixup=self.quad_mixup,
bg_mixup=self.bg_mixup,
patch_mixup=self.patch_mixup,
patch_size=self.patch_size,
audio_aug=train_audio_aug
)
val_args = dict(
frame_transform=val_img_transform,
audio_aug=val_audio_aug
)
if data_for_plotting:
val_args["use_audio"] = True
val_args["use_spec"] = True
if "ade" in name:
label_transform = T.Compose([
T.Resize(self.load_size, Image.NEAREST),
T.CenterCrop(self.load_size),
prep_ade_label
])
else:
label_transform = T.Compose([
T.Resize(self.load_size, Image.NEAREST),
T.CenterCrop(self.load_size)
])
val_args["use_audio"] = True
val_args["label_transform"] = label_transform
if name == "places-audio":
dataset_constructor = PlacesAudio
elif name == "mixed-full":
dataset_constructor = PlacesAndAudioSet
elif name == "audio-set-full":
dataset_constructor = AudioSet
elif name == "audio-set-eval":
dataset_constructor = AudioSetEval
elif name == "ade":
val_args["use_semseg"] = True
dataset_constructor = ADE20K
elif name == "ade-speech-prompted":
val_args["use_semseg"] = True
dataset_constructor = ADE20KSpeechPrompted
elif name == "ade-sound-prompted":
val_args["use_semseg"] = True
dataset_constructor = ADE20KSoundPrompted
else:
raise ValueError(f"Unknown dataset name {name}")
data_args["use_audio_embed"] = self.use_cached_embs
data_args["audio_embed_model"] = self.audio_model_type
if stage == "full":
val_dataset = dataset_constructor(split="val", **{**data_args, **val_args})
train_dataset = dataset_constructor(split="train", **{**data_args, **val_args})
return ConcatDataset([train_dataset, val_dataset])
elif stage == "fit":
return dataset_constructor(split="train", **{**data_args, **train_args})
elif stage == "validate":
return dataset_constructor(split="val", **{**data_args, **val_args})
else:
raise ValueError(f"Unknown stage: {stage}")
def _maybe_subset(self, dataset, length):
if len(dataset) > length and self.dataset_name not in {"ade-sound-prompted", "ade-speech-prompted", "vggss"}:
print("Using a subset of validation data")
return Subset(dataset, generate_subset(len(dataset), length))
else:
print("Not using val subset")
return dataset
def _make_val_datasets(self):
val_sets = []
if self.use_original_val_set:
val_sets.append(self._maybe_subset(self.get_dataset_by_name(
self.dataset_name, "validate", self.data_for_plotting), 1000))
if self.use_extra_val_sets:
val_sets.append(self._maybe_subset(self.get_dataset_by_name(
"places-audio", "validate", self.data_for_plotting), 1000))
val_sets.append(self._maybe_subset(self.get_dataset_by_name(
"audio-set-eval", "validate", False, n_frames=1), 1000))
val_sets.append(self.get_dataset_by_name(
"ade-speech-prompted", "validate", True))
val_sets.append(self.get_dataset_by_name(
"ade-sound-prompted", "validate", self.data_for_plotting))
return val_sets
def setup(self, stage: str):
if stage == "full":
self.full_dataset = self.get_dataset_by_name(self.dataset_name, stage, self.data_for_plotting)
elif stage == "fit":
self.train_dataset = self.get_dataset_by_name(self.dataset_name, stage, self.data_for_plotting)
self.val_datasets = self._make_val_datasets()
elif stage == "validate":
self.val_datasets = self._make_val_datasets()
else:
raise ValueError(f"Unknown stage: {stage}")
def train_dataloader(self):
return DataLoader(self.train_dataset, shuffle=True, **self.loader_args, collate_fn=custom_coallate)
def subsampled_train_dataloader(self, k=5000):
if len(self.train_dataset) > k:
ds = Subset(self.train_dataset, generate_subset(len(self.train_dataset), k))
else:
ds = self.train_dataset
return DataLoader(ds, shuffle=True, **self.loader_args, collate_fn=custom_coallate)
def val_dataloader(self):
return [
DataLoader(dataset, shuffle=False, **self.loader_args, collate_fn=custom_coallate)
for dataset in self.val_datasets
]
def full_dataloader(self):
return DataLoader(self.full_dataset, shuffle=False, **self.loader_args, collate_fn=custom_coallate)
def generate_subset(n, batch, seed=0):
np.random.seed(seed)
return np.random.permutation(n)[:batch]
def prep_ade_label(img):
seg = np.array(img)
class_labels = (seg[:, :, 0] / 10).astype(np.int32) * 256 + (seg[:, :, 1].astype(np.int32))
return class_labels
def maybe_replace(e, not_none):
if e is not None:
return e
else:
print("Warning found a None in the dataset indicitive of a loading failure, replacing it with another item")
return not_none[0]
empty_caption = {
"words": [],
"start": [],
"end": [],
}
def custom_coallate(l):
if l is None:
return l
not_none = [e for e in l if e is not None]
assert len(not_none) > 0
l = [maybe_replace(e, not_none) for e in l]
to_merge = {}
def pop_or_default(dict, k, default):
if k in dict:
return dict.pop(k)
else:
print(f"WARNING: Could not find {k}, using {default}")
return default
if "caption" in l[0]:
to_merge["caption"] = [pop_or_default(l[i], "caption", empty_caption) for i in range(len(l))]
if "text" in l[0]:
to_merge["text"] = [pop_or_default(l[i], "text", "") for i in range(len(l))]
result = default_collate(l)
return {**result, **to_merge}
if __name__ == "__main__":
from featurizers.Hubert import HubertAudioTransform
pytorch_data_dir = "/pytorch-data"
dataset_constructor = PlacesAudio
split = "val"
img_transform = T.Compose([
T.Resize(224, Image.BILINEAR),
T.CenterCrop(224),
T.ToTensor(),
norm])
video_transform = T.Compose([
T.Resize(224, Image.BILINEAR),
T.CenterCrop(224),
norm])
label_transform = T.Compose([
T.Resize(224, Image.NEAREST),
T.CenterCrop(224)
])
audio_transform = HubertAudioTransform()
data_args = dict(
root=pytorch_data_dir,
frame_transform=img_transform,
use_frames=True,
use_spec=True,
use_audio=True,
use_caption=False,
use_semseg=False,
label_transform=label_transform,
audio_transform=audio_transform,
use_audio_embed=False,
audio_embed_model="audiomae",
extra_audio_masking=False,
neg_audio=False,
override_target_length=10,
audio_level=False,
quad_mixup=.3,
patch_mixup=.3,
bg_mixup=.3,
)
def return_datasets(dataset_constructor, split):
dataset = dataset_constructor(split=split, **data_args)
return dataset
train_ds = return_datasets(dataset_constructor, split)
print(len(train_ds))
train_loader = DataLoader(train_ds, batch_size=1, shuffle=False, num_workers=36, collate_fn=custom_coallate)
for batch in tqdm(train_loader):
pass
|