File size: 8,187 Bytes
ca55784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import gradio as gr
import os
import time
from datetime import datetime
from langchain_community.document_loaders import PyPDFLoader, TextLoader, Docx2txtLoader
from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from pptx import Presentation
from io import BytesIO

# Environment setup for Hugging Face token
os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv("HUGGINGFACEHUB_API_TOKEN", "your-hf-token-here")

# Model and embedding options
LLM_MODELS = {
    "Lightweight (Gemma-2B)": "google/gemma-2b-it",
    "Balanced (Mixtral-8x7B)": "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "High Accuracy (Llama-3-8B)": "meta-llama/Llama-3-8b-hf"
}

EMBEDDING_MODELS = {
    "Lightweight (MiniLM-L6)": "sentence-transformers/all-MiniLM-L6-v2",
    "Balanced (MPNet-Base)": "sentence-transformers/all-mpnet-base-v2",
    "High Accuracy (BGE-Large)": "BAAI/bge-large-en-v1.5"
}

# Global state
vector_store = None
qa_chain = None
chat_history = []
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)

# Custom PPTX loader
class PPTXLoader:
    def __init__(self, file_path):
        self.file_path = file_path

    def load(self):
        docs = []
        with open(self.file_path, "rb") as f:
            prs = Presentation(BytesIO(f.read()))
            for slide_num, slide in enumerate(prs.slides, 1):
                text = ""
                for shape in slide.shapes:
                    if hasattr(shape, "text"):
                        text += shape.text + "\n"
                if text.strip():
                    docs.append({"page_content": text, "metadata": {"source": self.file_path, "slide": slide_num}})
        return docs

# Function to load documents
def load_documents(files):
    documents = []
    for file in files:
        file_path = file.name
        if file_path.endswith(".pdf"):
            loader = PyPDFLoader(file_path)
            documents.extend(loader.load())
        elif file_path.endswith(".txt"):
            loader = TextLoader(file_path)
            documents.extend(loader.load())
        elif file_path.endswith(".docx"):
            loader = Docx2txtLoader(file_path)
            documents.extend(loader.load())
        elif file_path.endswith(".pptx"):
            loader = PPTXLoader(file_path)
            documents.extend([{"page_content": doc["page_content"], "metadata": doc["metadata"]} for doc in loader.load()])
    return documents

# Function to process documents and create vector store
def process_documents(files, chunk_size, chunk_overlap, embedding_model):
    global vector_store, qa_chain
    if not files:
        return "Please upload at least one document.", None

    # Load documents
    documents = load_documents(files)
    if not documents:
        return "No valid documents loaded.", None

    # Split documents
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=int(chunk_size),
        chunk_overlap=int(chunk_overlap),
        length_function=len
    )
    doc_splits = text_splitter.split_documents(documents)

    # Create embeddings
    embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODELS[embedding_model])

    # Create vector store
    try:
        vector_store = Chroma.from_documents(doc_splits, embeddings, persist_directory="./chroma_db")
        return f"Processed {len(documents)} documents into {len(doc_splits)} chunks.", None
    except Exception as e:
        return f"Error processing documents: {str(e)}", None

# Function to initialize QA chain
def initialize_qa_chain(llm_model, temperature):
    global qa_chain
    try:
        llm = HuggingFaceEndpoint(
            repo_id=LLM_MODELS[llm_model],
            temperature=float(temperature),
            max_length=512,
            huggingfacehub_api_token=os.environ["HUGGINGFACEHUB_API_TOKEN"]
        )
        qa_chain = ConversationalRetrievalChain.from_llm(
            llm=llm,
            retriever=vector_store.as_retriever(search_kwargs={"k": 3}),
            memory=memory
        )
        return "QA chain initialized successfully.", None
    except Exception as e:
        return f"Error initializing QA chain: {str(e)}", None

# Function to handle user query
def answer_question(question, llm_model, embedding_model, temperature, chunk_size, chunk_overlap):
    global chat_history
    if not vector_store or not qa_chain:
        return "Please upload documents and initialize the QA chain.", chat_history

    try:
        response = qa_chain({"question": question})["answer"]
        chat_history.append(("User", question))
        chat_history.append(("Bot", response))
        return response, chat_history
    except Exception as e:
        return f"Error answering question: {str(e)}", chat_history

# Function to export chat history
def export_chat():
    if not chat_history:
        return "No chat history to export.", None
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    filename = f"chat_history_{timestamp}.txt"
    with open(filename, "w") as f:
        for role, message in chat_history:
            f.write(f"{role}: {message}\n\n")
    return f"Chat history exported to {filename}.", filename

# Function to reset the app
def reset_app():
    global vector_store, qa_chain, chat_history, memory
    vector_store = None
    qa_chain = None
    chat_history = []
    memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
    if os.path.exists("./chroma_db"):
        import shutil
        shutil.rmtree("./chroma_db")
    return "App reset successfully.", None

# Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), title="DocTalk: Document Q&A Chatbot") as demo:
    gr.Markdown("# DocTalk: Document Q&A Chatbot")
    gr.Markdown("Upload documents (PDF, TXT, DOCX, PPTX), select models, tune parameters, and ask questions!")

    with gr.Row():
        with gr.Column(scale=2):
            file_upload = gr.Files(label="Upload Documents", file_types=[".pdf", ".txt", ".docx", ".pptx"])
            with gr.Row():
                process_button = gr.Button("Process Documents")
                reset_button = gr.Button("Reset App")
            status = gr.Textbox(label="Status", interactive=False)

        with gr.Column(scale=1):
            llm_model = gr.Dropdown(choices=list(LLM_MODELS.keys()), label="Select LLM Model", value="Lightweight (Gemma-2B)")
            embedding_model = gr.Dropdown(choices=list(EMBEDDING_MODELS.keys()), label="Select Embedding Model", value="Lightweight (MiniLM-L6)")
            temperature = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Temperature")
            chunk_size = gr.Slider(minimum=500, maximum=2000, step=100, value=1000, label="Chunk Size")
            chunk_overlap = gr.Slider(minimum=0, maximum=500, step=50, value=100, label="Chunk Overlap")
            init_button = gr.Button("Initialize QA Chain")

    gr.Markdown("## Chat Interface")
    question = gr.Textbox(label="Ask a Question", placeholder="Type your question here...")
    answer = gr.Textbox(label="Answer", interactive=False)
    chat_display = gr.Chatbot(label="Chat History")
    export_button = gr.Button("Export Chat History")
    export_file = gr.File(label="Exported Chat File")

    # Event handlers
    process_button.click(
        fn=process_documents,
        inputs=[file_upload, chunk_size, chunk_overlap, embedding_model],
        outputs=[status, chat_display]
    )
    init_button.click(
        fn=initialize_qa_chain,
        inputs=[llm_model, temperature],
        outputs=[status, chat_display]
    )
    question.submit(
        fn=answer_question,
        inputs=[question, llm_model, embedding_model, temperature, chunk_size, chunk_overlap],
        outputs=[answer, chat_display]
    )
    export_button.click(
        fn=export_chat,
        outputs=[status, export_file]
    )
    reset_button.click(
        fn=reset_app,
        outputs=[status, chat_display]
    )

demo.launch()