File size: 4,067 Bytes
9c15e66
14a458d
9c15e66
 
8a589e9
14a458d
 
9c15e66
14a458d
 
9c15e66
 
4cbcc7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c15e66
4cbcc7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c15e66
 
 
 
 
 
4cbcc7c
14a458d
9c15e66
14a458d
 
 
9c15e66
 
14a458d
9c15e66
14a458d
9c15e66
14a458d
9c15e66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a06974
9c15e66
 
 
 
 
 
 
 
 
 
 
14a458d
9c15e66
 
14a458d
52b4297
9c15e66
 
 
 
 
4cbcc7c
9c15e66
 
 
70cbfc1
9c15e66
8a589e9
 
9c15e66
14a458d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from PIL import Image
from io import BytesIO
from torchvision import transforms
from typing import Literal, Any
import gradio as gr
from matplotlib.figure import Figure
import matplotlib.pyplot as plt
import spaces
import torch
import torch.nn.functional as F


LABELS = [
    "Panoramic",
    "Feature",
    "Detail",
    "Enclosed",
    "Focal",
    "Ephemeral",
    "Canopied",
]

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

model = torch.load(
    "Litton-7type-visual-landscape-model.pth", map_location=device, weights_only=False
).module
model.eval()
preprocess = transforms.Compose(
    [
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize(
            mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
        ),
    ]
)

@spaces.GPU
def predict(image: Image.Image) -> Figure:
    image = image.convert("RGB")
    input_tensor = preprocess(image).unsqueeze(0).to(device)

    with torch.no_grad():
        logits = model(input_tensor)
        probs = F.softmax(logits[:, :7], dim=1).cpu()

    return draw_bar_chart(
        {
            "class": LABELS,
            "probs": probs[0] * 100,
        }
    )


def draw_bar_chart(data: dict[str, list[str | float]]):
    classes = data["class"]
    probabilities = data["probs"]

    fig, ax = plt.subplots(figsize=(8, 6))
    ax.bar(classes, probabilities, color="skyblue")

    ax.set_xlabel("Class")
    ax.set_ylabel("Probability (%)")
    ax.set_title("Class Probabilities")

    for i, prob in enumerate(probabilities):
        ax.text(i, prob + 0.01, f"{prob:.2f}", ha="center", va="bottom")

    fig.tight_layout()

    return fig


def get_layout():
    css = """
    .main-title {
        font-size: 24px;
        font-weight: bold;
        text-align: center;
        margin-bottom: 20px;
    }
    .reference {
        text-align: center;
        font-size: 1.2em;
        color: #d1d5db;
        margin-bottom: 20px;
    }
    .reference a {
        color: #FB923C;
        text-decoration: none;
    }
    .reference a:hover {
        text-decoration: underline;
        color: #FB923C;
    }
    .title {
        border-bottom: 1px solid;
    }
    .footer {
        text-align: center;
        margin-top: 30px;
        padding-top: 20px;
        border-top: 1px solid #ddd;
        color: #d1d5db;
        font-size: 14px;
    }
    """
    theme = gr.themes.Base(
        primary_hue="orange",
        secondary_hue="orange",
        neutral_hue="gray",
        font=gr.themes.GoogleFont("Source Sans Pro"),
    ).set(
        background_fill_primary="*neutral_950",  # 主背景色(深黑)
        button_primary_background_fill="*primary_500",  # 按鈕顏色(橘色)
        body_text_color="*neutral_200",  # 文字顏色(淺色)
    )
    with gr.Blocks(css=css, theme=theme) as demo:
        with gr.Column():
            gr.HTML(
                value=(
                    '<div class="main-title">Litton7景觀分類模型</div>'
                    '<div class="reference">引用資料:'
                    '<a href="https://www.airitilibrary.com/Article/Detail/10125434-N202406210003-00003" target="_blank">'
                    "何立智、李沁築、邱浩修(2024)。Litton7:Litton視覺景觀分類深度學習模型。戶外遊憩研究,37(2)"
                    "</a>"
                    "</div>"
                ),
            )

            with gr.Row(equal_height=True):
                image_input = gr.Image(label="上傳影像", type="pil")
                chart = gr.Plot(label="分類結果")

            start_button = gr.Button("開始分類", variant="primary")
            gr.HTML(
                '<div class="footer">© 2024 LCL 版權所有<br>開發者:何立智、楊哲睿</div>',
            )
            start_button.click(
                fn=predict,
                inputs=image_input,
                outputs=chart,
            )

    return demo


if __name__ == "__main__":
    get_layout().launch()