Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,16 @@
|
|
1 |
-
import matplotlib.pyplot as plt
|
2 |
-
import torch
|
3 |
from PIL import Image
|
|
|
4 |
from torchvision import transforms
|
5 |
-
import torch.nn.functional as F
|
6 |
from typing import Literal, Any
|
7 |
import gradio as gr
|
|
|
|
|
8 |
import spaces
|
9 |
-
|
|
|
10 |
|
11 |
|
12 |
-
class
|
13 |
LABELS = [
|
14 |
"Panoramic",
|
15 |
"Feature",
|
@@ -47,7 +48,7 @@ class Litton7Classifier:
|
|
47 |
)
|
48 |
|
49 |
@spaces.GPU(duration=60)
|
50 |
-
def predict(self, image: Image.Image) ->
|
51 |
image = image.convert("RGB")
|
52 |
input_tensor = self.preprocess(image).unsqueeze(0).to(self.device)
|
53 |
|
@@ -67,19 +68,20 @@ def draw_bar_chart(data: dict[str, list[str | float]]):
|
|
67 |
classes = data["class"]
|
68 |
probabilities = data["probs"]
|
69 |
|
70 |
-
plt.figure(
|
71 |
-
plt.
|
|
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
|
77 |
for i, prob in enumerate(probabilities):
|
78 |
-
|
79 |
|
80 |
-
|
81 |
|
82 |
-
return
|
83 |
|
84 |
|
85 |
def get_layout():
|
@@ -138,17 +140,17 @@ def get_layout():
|
|
138 |
"</div>"
|
139 |
),
|
140 |
)
|
141 |
-
|
142 |
with gr.Row(equal_height=True):
|
143 |
image_input = gr.Image(label="δΈε³ε½±ε", type="pil")
|
144 |
-
chart = gr.
|
145 |
|
146 |
start_button = gr.Button("ιε§ει‘", variant="primary")
|
147 |
gr.HTML(
|
148 |
'<div class="footer">Β© 2024 LCL ηζ¬ζζ<br>ιηΌθ
οΌδ½η«ζΊγζ₯ε²ηΏ</div>',
|
149 |
)
|
150 |
start_button.click(
|
151 |
-
fn=
|
152 |
inputs=image_input,
|
153 |
outputs=chart,
|
154 |
)
|
@@ -157,4 +159,4 @@ def get_layout():
|
|
157 |
|
158 |
|
159 |
if __name__ == "__main__":
|
160 |
-
get_layout().launch()
|
|
|
|
|
|
|
1 |
from PIL import Image
|
2 |
+
from io import BytesIO
|
3 |
from torchvision import transforms
|
|
|
4 |
from typing import Literal, Any
|
5 |
import gradio as gr
|
6 |
+
from matplotlib.figure import Figure
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
import spaces
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
|
12 |
|
13 |
+
class Classifier:
|
14 |
LABELS = [
|
15 |
"Panoramic",
|
16 |
"Feature",
|
|
|
48 |
)
|
49 |
|
50 |
@spaces.GPU(duration=60)
|
51 |
+
def predict(self, image: Image.Image) -> Figure:
|
52 |
image = image.convert("RGB")
|
53 |
input_tensor = self.preprocess(image).unsqueeze(0).to(self.device)
|
54 |
|
|
|
68 |
classes = data["class"]
|
69 |
probabilities = data["probs"]
|
70 |
|
71 |
+
#fig = plt.figure()
|
72 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
73 |
+
ax.bar(classes, probabilities, color="skyblue")
|
74 |
|
75 |
+
ax.set_xlabel("Class")
|
76 |
+
ax.set_ylabel("Probability (%)")
|
77 |
+
ax.set_title("Class Probabilities")
|
78 |
|
79 |
for i, prob in enumerate(probabilities):
|
80 |
+
ax.text(i, prob + 0.01, f"{prob:.2f}", ha="center", va="bottom")
|
81 |
|
82 |
+
fig.tight_layout()
|
83 |
|
84 |
+
return fig
|
85 |
|
86 |
|
87 |
def get_layout():
|
|
|
140 |
"</div>"
|
141 |
),
|
142 |
)
|
143 |
+
|
144 |
with gr.Row(equal_height=True):
|
145 |
image_input = gr.Image(label="δΈε³ε½±ε", type="pil")
|
146 |
+
chart = gr.Plot(label="ει‘η΅ζ")
|
147 |
|
148 |
start_button = gr.Button("ιε§ει‘", variant="primary")
|
149 |
gr.HTML(
|
150 |
'<div class="footer">Β© 2024 LCL ηζ¬ζζ<br>ιηΌθ
οΌδ½η«ζΊγζ₯ε²ηΏ</div>',
|
151 |
)
|
152 |
start_button.click(
|
153 |
+
fn=Classifier().predict,
|
154 |
inputs=image_input,
|
155 |
outputs=chart,
|
156 |
)
|
|
|
159 |
|
160 |
|
161 |
if __name__ == "__main__":
|
162 |
+
get_layout().launch()
|