File size: 24,968 Bytes
5cc903d
fd1a723
09af587
1771fc5
104a4ce
1771fc5
cd41390
104a4ce
fd1a723
cd41390
1771fc5
83e8286
ca267e1
cd41390
5cc903d
09af587
cd41390
5cc903d
 
 
1771fc5
213c06e
5f6ba44
 
cd41390
 
 
 
 
213c06e
104a4ce
 
 
 
 
1a2a726
 
 
 
104a4ce
7048d93
5cc903d
104a4ce
 
5cc903d
 
104a4ce
 
 
 
816049c
 
 
 
 
 
 
 
 
 
 
5cc903d
 
 
104a4ce
fd1a723
 
 
5cc903d
 
 
 
 
 
 
 
ca267e1
 
104a4ce
 
cd41390
816049c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cc903d
104a4ce
5cc903d
104a4ce
5cc903d
 
 
 
 
 
104a4ce
 
 
 
cd41390
104a4ce
 
 
 
 
 
 
 
 
 
 
5cc903d
 
 
104a4ce
 
cd41390
5cc903d
ca267e1
5cc903d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104a4ce
 
816049c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104a4ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f4bace
 
 
 
 
 
 
 
 
104a4ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09af587
 
 
 
104a4ce
cd41390
104a4ce
 
 
fd1a723
104a4ce
 
 
 
 
 
 
 
 
0b8ef86
104a4ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd41390
fd1a723
 
 
 
 
 
104a4ce
9f4bace
fd1a723
 
5db5b18
 
cd41390
5cc903d
fd1a723
 
 
5cc903d
fd1a723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104a4ce
fd1a723
 
 
 
 
 
 
 
 
 
 
 
31639f7
fd1a723
 
 
 
 
 
 
 
104a4ce
 
816049c
c9bf28d
 
6307f82
816049c
 
 
 
9f4bace
6307f82
fd1a723
 
 
 
cd41390
5cc903d
 
fd1a723
5cc903d
fd1a723
 
 
 
 
 
 
 
 
 
 
 
 
 
5cc903d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b71d33
 
 
 
 
 
 
 
 
 
 
 
fd1a723
8b71d33
 
 
fd1a723
1771fc5
5cc903d
fd1a723
 
 
 
 
 
 
 
 
 
 
5cc903d
fd1a723
 
 
 
 
 
 
 
 
 
 
 
 
8b71d33
 
1771fc5
 
8b71d33
fd1a723
 
1771fc5
fd1a723
 
104a4ce
 
fd1a723
 
 
 
 
 
 
 
 
 
 
 
 
 
8b71d33
fd1a723
 
 
 
 
 
 
 
 
 
 
 
 
 
cd41390
5cc903d
 
 
fd1a723
5cc903d
 
fd1a723
 
 
 
 
cd41390
5cc903d
 
 
 
 
 
 
 
 
 
 
cd41390
5cc903d
 
cd41390
fd1a723
 
 
 
 
5cc903d
fd1a723
 
 
 
 
a6c5938
fd1a723
5cc903d
fd1a723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e76504
a87de4c
 
6eb3779
 
a87de4c
 
1771fc5
a87de4c
 
 
 
 
7e73f81
6b8032e
7e73f81
a87de4c
1771fc5
12c25aa
 
b378dc4
12c25aa
 
 
1771fc5
 
 
12c25aa
3d56068
 
12c25aa
a87de4c
3d56068
a87de4c
7076c22
a87de4c
 
12c25aa
 
 
 
 
816049c
09af587
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
816049c
 
 
 
 
 
09af587
7048d93
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
import asyncio
import copy
import json
import os
from dataclasses import asdict, dataclass
from datetime import datetime, timedelta
from functools import lru_cache
from json import JSONDecodeError
from typing import Any, Dict, List, Optional, Union

import gradio as gr
import httpx
import orjson
from cachetools import TTLCache, cached
from cashews import NOT_NONE, cache
from dotenv import load_dotenv
from httpx import AsyncClient, Client
from huggingface_hub import hf_hub_url, logging
from huggingface_hub.utils import disable_progress_bars
from rich import print
from tqdm.auto import tqdm

load_dotenv()  # take environment variables from .env.

CACHE_EXPIRY_TIME = timedelta(hours=3)

sync_cache = TTLCache(maxsize=200_000, ttl=CACHE_EXPIRY_TIME, timer=datetime.now)

cache.setup("mem://")


disable_progress_bars()

logging.set_verbosity_error()

if token := os.getenv("HF_TOKEN"):
    headers = {"authorization": f"Bearer {token}"}
else:
    raise EnvironmentError("No token found")


async def get_model_labels(model, client):
    try:
        url = hf_hub_url(repo_id=model, filename="config.json")
        resp = await client.get(url, timeout=2)
        return list(resp.json()["label2id"].keys())
    except (KeyError, JSONDecodeError, AttributeError):
        return None


def get_model_labels_sync(model, client=None):
    if not client:
        client = Client(headers=headers)
    try:
        url = hf_hub_url(repo_id=model, filename="config.json")
        resp = client.get(url, timeout=2)
        return list(resp.json()["label2id"].keys())
    except (KeyError, JSONDecodeError, AttributeError):
        return None


async def _try_load_model_card(hub_id, client=None):
    if not client:
        client = AsyncClient(headers=headers)
    try:
        url = hf_hub_url(
            repo_id=hub_id, filename="README.md"
        )  # We grab card this way rather than via client library to improve performance
        resp = await client.get(url)
        if resp.status_code == 200:
            card_text = resp.text
            length = len(card_text)
        elif resp.status_code == 404:
            card_text = None
            length = 0
    except httpx.ConnectError:
        card_text = None
        length = None
    return card_text, length


def _try_load_model_card_sync(hub_id, client=None):
    if not client:
        client = Client(headers=headers)
    try:
        url = hf_hub_url(
            repo_id=hub_id, filename="README.md"
        )  # We grab card this way rather than via client library to improve performance
        resp = client.get(url)
        if resp.status_code == 200:
            card_text = resp.text
            length = len(card_text)
        elif resp.status_code == 404:
            card_text = None
            length = 0
    except httpx.ConnectError:
        card_text = None
        length = None
    return card_text, length


def _try_parse_card_data(hub_json_data):
    data = {}
    keys = ["license", "language", "datasets"]
    for key in keys:
        if card_data := hub_json_data.get("cardData"):
            try:
                data[key] = card_data.get(key)
            except (KeyError, AttributeError):
                data[key] = None
        else:
            data[key] = None
    return data


@dataclass(eq=False)
class ModelMetadata:
    hub_id: str
    tags: Optional[List[str]]
    license: Optional[str]
    library_name: Optional[str]
    datasets: Optional[List[str]]
    pipeline_tag: Optional[str]
    labels: Optional[List[str]]
    languages: Optional[Union[str, List[str]]]
    model_card_text: Optional[str] = None
    model_card_length: Optional[int] = None
    likes: Optional[int] = None
    downloads: Optional[int] = None
    created_at: Optional[datetime] = None

    @classmethod
    @cache(ttl=CACHE_EXPIRY_TIME, condition=NOT_NONE)
    async def from_hub(cls, hub_id, client=None):
        try:
            if not client:
                client = httpx.AsyncClient()
            url = f"https://huggingface.co/api/models/{hub_id}"
            resp = await client.get(url)
            hub_json_data = resp.json()
            card_text, length = await _try_load_model_card(hub_id)
            data = _try_parse_card_data(hub_json_data)
            library_name = hub_json_data.get("library_name")
            pipeline_tag = hub_json_data.get("pipeline_tag")
            downloads = hub_json_data.get("downloads")
            likes = hub_json_data.get("likes")
            tags = hub_json_data.get("tags")
            labels = await get_model_labels(hub_id, client)
            return ModelMetadata(
                hub_id=hub_id,
                languages=data["language"],
                tags=tags,
                license=data["license"],
                library_name=library_name,
                datasets=data["datasets"],
                pipeline_tag=pipeline_tag,
                labels=labels,
                model_card_text=card_text,
                downloads=downloads,
                likes=likes,
                model_card_length=length,
            )
        except Exception as e:
            print(f"Failed to create ModelMetadata for model {hub_id}: {str(e)}")
            return None


@dataclass(eq=False)
class ModelMetadataSync:
    hub_id: str
    tags: Optional[List[str]]
    license: Optional[str]
    library_name: Optional[str]
    datasets: Optional[List[str]]
    pipeline_tag: Optional[str]
    labels: Optional[List[str]]
    languages: Optional[Union[str, List[str]]]
    model_card_text: Optional[str] = None
    model_card_length: Optional[int] = None
    likes: Optional[int] = None
    downloads: Optional[int] = None
    created_at: Optional[datetime] = None

    @classmethod
    def from_hub(cls, hub_id, client=None):
        try:
            if not client:
                client = httpx.Client(headers=headers)
            url = f"https://huggingface.co/api/models/{hub_id}"
            resp = client.get(url)
            hub_json_data = resp.json()
            card_text, length = _try_load_model_card_sync(hub_id)
            data = _try_parse_card_data(hub_json_data)
            library_name = hub_json_data.get("library_name")
            pipeline_tag = hub_json_data.get("pipeline_tag")
            downloads = hub_json_data.get("downloads")
            likes = hub_json_data.get("likes")
            tags = hub_json_data.get("tags")
            labels = get_model_labels_sync(hub_id, client)
            return ModelMetadata(
                hub_id=hub_id,
                languages=data["language"],
                tags=tags,
                license=data["license"],
                library_name=library_name,
                datasets=data["datasets"],
                pipeline_tag=pipeline_tag,
                labels=labels,
                model_card_text=card_text,
                downloads=downloads,
                likes=likes,
                model_card_length=length,
            )
        except Exception as e:
            print(f"Failed to create ModelMetadata for model {hub_id}: {str(e)}")
            return None


COMMON_SCORES = {
    "license": {
        "required": True,
        "score": 2,
        "missing_recommendation": (
            "You have not added a license to your models metadata"
        ),
    },
    "datasets": {
        "required": False,
        "score": 1,
        "missing_recommendation": (
            "You have not added any datasets to your models metadata"
        ),
    },
    "model_card_text": {
        "required": True,
        "score": 3,
        "missing_recommendation": """You haven't created a model card for your model. It is strongly recommended to have a model card for your model. \nYou can create for your model by clicking [here](https://huggingface.co/HUB_ID/edit/main/README.md)""",
    },
    "tags": {
        "required": False,
        "score": 2,
        "missing_recommendation": (
            "You don't have any tags defined in your model metadata. Tags can help"
            " people find relevant models on the Hub. You can create for your model by"
            " clicking [here](https://huggingface.co/HUB_ID/edit/main/README.md)"
        ),
    },
}


TASK_TYPES_WITH_LANGUAGES = {
    "text-classification",
    "token-classification",
    "table-question-answering",
    "question-answering",
    "zero-shot-classification",
    "translation",
    "summarization",
    "text-generation",
    "text2text-generation",
    "fill-mask",
    "sentence-similarity",
    "text-to-speech",
    "automatic-speech-recognition",
    "text-to-image",
    "image-to-text",
    "visual-question-answering",
    "document-question-answering",
}

LABELS_REQUIRED_TASKS = {
    "text-classification",
    "token-classification",
    "object-detection",
    "audio-classification",
    "image-classification",
    "tabular-classification",
}
ALL_PIPELINES = {
    "audio-classification",
    "audio-to-audio",
    "automatic-speech-recognition",
    "conversational",
    "depth-estimation",
    "document-question-answering",
    "feature-extraction",
    "fill-mask",
    "graph-ml",
    "image-classification",
    "image-segmentation",
    "image-to-image",
    "image-to-text",
    "object-detection",
    "question-answering",
    "reinforcement-learning",
    "robotics",
    "sentence-similarity",
    "summarization",
    "table-question-answering",
    "tabular-classification",
    "tabular-regression",
    "text-classification",
    "text-generation",
    "text-to-image",
    "text-to-speech",
    "text-to-video",
    "text2text-generation",
    "token-classification",
    "translation",
    "unconditional-image-generation",
    "video-classification",
    "visual-question-answering",
    "voice-activity-detection",
    "zero-shot-classification",
    "zero-shot-image-classification",
}

formatted_scores = "\n"
for k, v in COMMON_SCORES.items():
    formatted_scores += f"{k}:{v}" + "\n"


@lru_cache()
def generate_task_scores_dict():
    task_scores = {}
    for task in ALL_PIPELINES:
        task_dict = copy.deepcopy(COMMON_SCORES)
        if task in TASK_TYPES_WITH_LANGUAGES:
            task_dict = {
                **task_dict,
                **{
                    "languages": {
                        "required": True,
                        "score": 2,
                        "missing_recommendation": (
                            "You haven't defined any languages in your metadata. This"
                            f" is usually recommend for {task} task"
                        ),
                    }
                },
            }
        if task in LABELS_REQUIRED_TASKS:
            task_dict = {
                **task_dict,
                **{
                    "labels": {
                        "required": True,
                        "score": 2,
                        "missing_recommendation": (
                            "You haven't defined any labels in the config.json file"
                            f" these are usually recommended for {task}"
                        ),
                    }
                },
            }
        max_score = sum(value["score"] for value in task_dict.values())
        task_dict["_max_score"] = max_score
        task_scores[task] = task_dict
    return task_scores


@lru_cache()
def generate_common_scores():
    GENERIC_SCORES = copy.deepcopy(COMMON_SCORES)
    GENERIC_SCORES["_max_score"] = sum(
        value["score"] for value in GENERIC_SCORES.values()
    )
    return GENERIC_SCORES


SCORES = generate_task_scores_dict()
GENERIC_SCORES = generate_common_scores()


@cached(sync_cache)
def _basic_check(data: Optional[ModelMetadata]):
    score = 0
    if data is None:
        return None
    hub_id = data.hub_id
    to_fix = {}
    if task := data.pipeline_tag:
        task_scores = SCORES[task]
        data_dict = asdict(data)
        for k, v in task_scores.items():
            if k.startswith("_"):
                continue
            if data_dict[k] is None:
                to_fix[k] = task_scores[k]["missing_recommendation"].replace(
                    "HUB_ID", hub_id
                )
            if data_dict[k] is not None:
                score += v["score"]
        max_score = task_scores["_max_score"]
        score = score / max_score
        (
            f"Your model's metadata score is {round(score*100)}% based on suggested"
            f" metadata for {task}. \n"
        )
        if to_fix:
            recommendations = (
                "Here are some suggestions to improve your model's metadata for"
                f" {task}: \n"
            )
            for v in to_fix.values():
                recommendations += f"\n- {v}"
            data_dict["recommendations"] = recommendations
        data_dict["score"] = score * 100
    else:
        data_dict = asdict(data)
        for k, v in GENERIC_SCORES.items():
            if k.startswith("_"):
                continue
            if data_dict[k] is None:
                to_fix[k] = GENERIC_SCORES[k]["missing_recommendation"].replace(
                    "HUB_ID", hub_id
                )
            if data_dict[k] is not None:
                score += v["score"]
        score = score / GENERIC_SCORES["_max_score"]
        data_dict["score"] = max(
            0, (score / 2) * 100
        )  # TODO currently setting a manual penalty for not having a task

    return orjson.dumps(data_dict)


def basic_check(hub_id):  # add types
    return _basic_check(hub_id)


@cached(sync_cache)
def basic_check_from_hub_id(hub_id):
    model_data = ModelMetadataSync.from_hub(hub_id)
    return orjson.loads(basic_check(model_data))


def create_query_url(query, skip=0):
    return f"https://huggingface.co/api/search/full-text?q={query}&limit=100&skip={skip}&type=model"


def get_results(query, sync_client=None) -> Dict[Any, Any]:
    if not sync_client:
        sync_client = Client(http2=True, headers=headers)
    url = create_query_url(query)
    r = sync_client.get(url)
    return r.json()


def parse_single_result(result):
    name, filename = result["name"], result["fileName"]
    search_result_file_url = hf_hub_url(name, filename)
    repo_hub_url = f"https://huggingface.co/{name}"
    return {
        "name": name,
        "search_result_file_url": search_result_file_url,
        "repo_hub_url": repo_hub_url,
    }


@cache(ttl=timedelta(hours=3), condition=NOT_NONE)
async def get_hub_models(results, client=None):
    parsed_results = [parse_single_result(result) for result in results]
    if not client:
        client = AsyncClient(http2=True, headers=headers)
    model_ids = [result["name"] for result in parsed_results]
    model_objs = [ModelMetadata.from_hub(model, client=client) for model in model_ids]
    models = await asyncio.gather(*model_objs)
    results = []
    for result, model in zip(parsed_results, models):
        score = _basic_check(model)
        # print(f"score for {model} is {score}")
        if score is not None:
            score = orjson.loads(score)
            result["metadata_score"] = score["score"]
            result["model_card_length"] = score["model_card_length"]
            result["is_licensed"] = (bool(score["license"]),)
            results.append(result)
        else:
            results.append(None)
    return results


def filter_for_license(results):
    for result in results:
        if result["is_licensed"]:
            yield result


def filter_for_min_model_card_length(results, min_model_card_length):
    for result in results:
        if result["model_card_length"] > min_model_card_length:
            yield result


def filter_search_results(
    results: List[Dict[Any, Any]],
    min_score=None,
    min_model_card_length=None,
):  # TODO make code more intuitive
    # TODO setup filters as separate functions and chain results
    results = asyncio.run(get_hub_models(results))
    for i, parsed_result in tqdm(enumerate(results)):
        # parsed_result = parse_single_result(result)
        if parsed_result is None:
            continue
        if (
            min_score is None
            and min_model_card_length is not None
            and parsed_result["model_card_length"] > min_model_card_length
            or min_score is None
            and min_model_card_length is None
        ):
            parsed_result["original_position"] = i
            yield parsed_result
        elif min_score is not None:
            if parsed_result["metadata_score"] <= min_score:
                continue
            if (
                min_model_card_length is not None
                and parsed_result["model_card_length"] > min_model_card_length
                or min_model_card_length is None
            ):
                parsed_result["original_position"] = i
                yield parsed_result


def sort_search_results(
    filtered_search_results,
    first_sort_key="metadata_score",
    second_sort_key="original_position",  # TODO expose these in results
):
    return sorted(
        list(filtered_search_results),
        key=lambda x: (x[first_sort_key], x[second_sort_key]),
        reverse=True,
    )


def find_context(text, query, window_size):
    # Split the text into words
    words = text.split()
    # Find the index of the query token
    try:
        index = words.index(query)
        # Get the start and end indices of the context window
        start = max(0, index - window_size)
        end = min(len(words), index + window_size + 1)
        return " ".join(words[start:end])
    except ValueError:
        return " ".join(words[:window_size])


def create_markdown(results):  # TODO move to separate file
    rows = []
    for result in results:
        row = f"""# [{result['name']}]({result['repo_hub_url']})
| Metadata Quality Score | Model card length | Licensed |
|------------------------|-------------------|----------|
| {result['metadata_score']:.0f}%                  |    {result['model_card_length']}  | {"&#9989;" if result['is_licensed'] else "&#10060;"} |
\n
*{result['text']}*

<hr>
\n"""
        rows.append(row)
    return "\n".join(rows)


async def get_result_card_snippet(result, query=None, client=None):
    if not client:
        client = AsyncClient(http2=True, headers=headers)
    try:
        resp = await client.get(result["search_result_file_url"])
        result_text = resp.text
        result["text"] = find_context(result_text, query, 100)
    except httpx.ConnectError:
        result["text"] = "Could not load model card"
    return result


@cache(ttl=timedelta(hours=3), condition=NOT_NONE)
async def get_result_card_snippets(results, query=None, client=None):
    if not client:
        client = AsyncClient(http2=True, headers=headers)
    result_snippets = [
        get_result_card_snippet(result, query=query, client=client)
        for result in results
    ]
    results = await asyncio.gather(*result_snippets)
    return results


sync_client = Client(http2=True, headers=headers)


def _search_hub(
    query: str,
    min_score: Optional[int] = None,
    min_model_card_length: Optional[int] = None,
):
    results = get_results(query, sync_client)
    print(f"Found {len(results['hits'])} results")
    results = results["hits"]
    number_original_results = len(results)
    filtered_results = filter_search_results(
        results, min_score=min_score, min_model_card_length=min_model_card_length
    )
    filtered_results = sort_search_results(filtered_results)
    final_results = asyncio.run(get_result_card_snippets(filtered_results, query=query))
    percent_of_original = round(
        len(final_results) / number_original_results * 100, ndigits=0
    )
    filtered_vs_og = f"""
| Number of original results | Number of results after filtering | Percentage of results after filtering        |
| -------------------------- | --------------------------------- | -------------------------------------------- |
| {number_original_results}  | {len(final_results)}              | {percent_of_original}%                       |

"""
    return filtered_vs_og, create_markdown(final_results)


def search_hub(query: str, min_score=None, min_model_card_length=None):
    return _search_hub(query, min_score, min_model_card_length)


with gr.Blocks() as demo:
    with gr.Tab("Search"):
        gr.HTML(
            """      
<h1 style="text-align: center;"> &#128269; MetaRefine  &#128269; </h1>
<p style="text-align: center;">&#x2728; <em> Refine Hub model search results by metadata quality.</em> &#x2728;</p>
"""
        )
        gr.Markdown(
            """This app enables you to perform full-text searches on the Hugging Face Hub for machine learning models. 
            You can search by keyword or phrase and filter results by metadata quality. 
            Optionally, you can set a minimum model card length or metadata quality score to refine your results. 
            Models are ranked based on metadata quality, with higher scores receiving priority. 
            In case of equal scores, the original search order determines the ranking. 
            More filtering and sorting options may be added based on user interest! 
            
            If you have feedback please [open an issue](https://huggingface.co/spaces/librarian-bots/MetaRefine/discussions/new) in the community tab! 
            """
        )
        with gr.Row():
            with gr.Column():
                query = gr.Textbox("historic", label="Search query")
            with gr.Column():
                button = gr.Button("Search")
                with gr.Row():
                    # literal_search = gr.Checkbox(False, label="Literal_search")
                    # TODO add option for exact matching i.e. phrase matching
                    # gr.Checkbox(False, label="Must have license?")
                    mim_model_card_length = gr.Number(
                        100,
                        label="Minimum model card length (words)",
                    )
                    min_metadata_score = gr.Slider(
                        0, 100, 50, label="Minimum metadata score (%)"
                    )
        # gr.Markdown("## Search results")
        filter_results = gr.Markdown()
        results_markdown = gr.Markdown()
        button.click(
            search_hub,
            [query, min_metadata_score, mim_model_card_length],
            [filter_results, results_markdown],
        )
    with gr.Tab("Metadata quality details)"):
        with gr.Row():
            gr.Markdown(
                """# How metadata quality is scored?
            The current approach to metadata scoring is based on checking if a particular piece of metadata is present or not i.e. is a dataset specified in the mode's metadata or not?
            For each metadata field a score between 1 and 3 is given if that feature is present or not. These scores are based on the relative importance of the metadata field.
            We do this on a task specific basis for models where a `pipeline_tag` exists. 
            For each task the scores achieved are compared to the maximum possible score for that field."""
            )
        with gr.Row():
            gr.Markdown(
                """
                ### Common Scores
                We start with some 'common scores'. These common scores are for fields which should be present for any model i.e. they are not specific to a particular task."""
            )
        with gr.Accordion(label="Common scores dictionary"):
            gr.JSON(json.dumps(COMMON_SCORES))
        with gr.Row():
            gr.Markdown(
                """# Task specific scoring. 
            We also define task specific scores for the following model task types. This allows are scoring to reflect the fact that different tasks have different metadata requirements. For example, the following set includes all tasks for which a language should be specified."""
            )
        with gr.Row():
            markdown_formatted_languages = "".join(
                "-" + " " + task + "\n" for task in TASK_TYPES_WITH_LANGUAGES
            )
            gr.Markdown(markdown_formatted_languages)
        with gr.Row():
            gr.Markdown(
                """#### Text classification example
                    Below you can see the example scoring dictionary for text-classification models."""
            )
        with gr.Accordion(label="Text classification dictionary"):
            text_class_scores_example = SCORES["text-classification"]
            gr.Json(json.dumps(text_class_scores_example))
        with gr.Accordion(label="Full overview of all scores", open=False):
            gr.Json(json.dumps(SCORES))
    with gr.Tab("Score models"):
        model_id_to_score = gr.Textbox(
            placeholder="bert-base-uncased", label="Model ID"
        )
        score_model = gr.Button("Score model")
        score_model.click(basic_check_from_hub_id, model_id_to_score, [gr.Json()])

demo.launch()