Spaces:
Runtime error
Runtime error
Commit
·
104a4ce
1
Parent(s):
016ee09
app
Browse files
app.py
ADDED
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
import os
|
3 |
+
from dataclasses import asdict, dataclass
|
4 |
+
from functools import lru_cache
|
5 |
+
from json import JSONDecodeError
|
6 |
+
from typing import List, Optional, Union
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
import requests
|
10 |
+
from huggingface_hub import (
|
11 |
+
HfApi,
|
12 |
+
ModelCard,
|
13 |
+
hf_hub_url,
|
14 |
+
list_models,
|
15 |
+
list_repo_commits,
|
16 |
+
logging,
|
17 |
+
model_info,
|
18 |
+
)
|
19 |
+
from huggingface_hub.utils import EntryNotFoundError, disable_progress_bars
|
20 |
+
from tqdm.contrib.concurrent import thread_map
|
21 |
+
|
22 |
+
disable_progress_bars()
|
23 |
+
|
24 |
+
logging.set_verbosity_error()
|
25 |
+
|
26 |
+
token = os.getenv("HF_TOKEN")
|
27 |
+
|
28 |
+
|
29 |
+
def get_model_labels(model):
|
30 |
+
try:
|
31 |
+
url = hf_hub_url(repo_id=model, filename="config.json")
|
32 |
+
return list(requests.get(url).json()["label2id"].keys())
|
33 |
+
except (KeyError, JSONDecodeError, AttributeError):
|
34 |
+
return None
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class EngagementStats:
|
39 |
+
likes: int
|
40 |
+
downloads: int
|
41 |
+
created_at: datetime.datetime
|
42 |
+
|
43 |
+
|
44 |
+
def _get_engagement_stats(hub_id):
|
45 |
+
api = HfApi(token=token)
|
46 |
+
repo = api.repo_info(hub_id)
|
47 |
+
return EngagementStats(
|
48 |
+
likes=repo.likes,
|
49 |
+
downloads=repo.downloads,
|
50 |
+
created_at=list_repo_commits(hub_id, repo_type="model")[-1].created_at,
|
51 |
+
)
|
52 |
+
|
53 |
+
|
54 |
+
def _try_load_model_card(hub_id):
|
55 |
+
try:
|
56 |
+
card_text = ModelCard.load(hub_id, token=token).text
|
57 |
+
length = len(card_text)
|
58 |
+
except EntryNotFoundError:
|
59 |
+
card_text = None
|
60 |
+
length = None
|
61 |
+
return card_text, length
|
62 |
+
|
63 |
+
|
64 |
+
def _try_parse_card_data(hub_id):
|
65 |
+
data = {}
|
66 |
+
keys = ["license", "language", "datasets"]
|
67 |
+
for key in keys:
|
68 |
+
try:
|
69 |
+
value = model_info(hub_id, token=token).cardData[key]
|
70 |
+
data[key] = value
|
71 |
+
except (KeyError, AttributeError):
|
72 |
+
data[key] = None
|
73 |
+
return data
|
74 |
+
|
75 |
+
|
76 |
+
@dataclass
|
77 |
+
class ModelMetadata:
|
78 |
+
hub_id: str
|
79 |
+
tags: Optional[List[str]]
|
80 |
+
license: Optional[str]
|
81 |
+
library_name: Optional[str]
|
82 |
+
datasets: Optional[List[str]]
|
83 |
+
pipeline_tag: Optional[str]
|
84 |
+
labels: Optional[List[str]]
|
85 |
+
languages: Optional[Union[str, List[str]]]
|
86 |
+
engagement_stats: Optional[EngagementStats] = None
|
87 |
+
model_card_text: Optional[str] = None
|
88 |
+
model_card_length: Optional[int] = None
|
89 |
+
|
90 |
+
@classmethod
|
91 |
+
@lru_cache()
|
92 |
+
def from_hub(cls, hub_id):
|
93 |
+
model = model_info(hub_id)
|
94 |
+
card_text, length = _try_load_model_card(hub_id)
|
95 |
+
data = _try_parse_card_data(hub_id)
|
96 |
+
try:
|
97 |
+
library_name = model.library_name
|
98 |
+
except AttributeError:
|
99 |
+
library_name = None
|
100 |
+
try:
|
101 |
+
tags = model.tags
|
102 |
+
except AttributeError:
|
103 |
+
tags = None
|
104 |
+
try:
|
105 |
+
pipeline_tag = model.pipeline_tag
|
106 |
+
except AttributeError:
|
107 |
+
pipeline_tag = None
|
108 |
+
return ModelMetadata(
|
109 |
+
hub_id=hub_id,
|
110 |
+
languages=data["language"],
|
111 |
+
tags=tags,
|
112 |
+
license=data["license"],
|
113 |
+
library_name=library_name,
|
114 |
+
datasets=data["datasets"],
|
115 |
+
pipeline_tag=pipeline_tag,
|
116 |
+
labels=get_model_labels(hub_id),
|
117 |
+
engagement_stats=_get_engagement_stats(hub_id),
|
118 |
+
model_card_text=card_text,
|
119 |
+
model_card_length=length,
|
120 |
+
)
|
121 |
+
|
122 |
+
|
123 |
+
COMMON_SCORES = {
|
124 |
+
"license": {
|
125 |
+
"required": True,
|
126 |
+
"score": 2,
|
127 |
+
"missing_recommendation": (
|
128 |
+
"You have not added a license to your models metadata"
|
129 |
+
),
|
130 |
+
},
|
131 |
+
"datasets": {
|
132 |
+
"required": False,
|
133 |
+
"score": 1,
|
134 |
+
"missing_recommendation": (
|
135 |
+
"You have not added any datasets to your models metadata"
|
136 |
+
),
|
137 |
+
},
|
138 |
+
"model_card_text": {
|
139 |
+
"required": True,
|
140 |
+
"score": 3,
|
141 |
+
"missing_recommendation": """You haven't created a model card for your model. It is strongly recommended to have a model card for your model. \nYou can create for your model by clicking [here](https://huggingface.co/HUB_ID/edit/main/README.md)""",
|
142 |
+
},
|
143 |
+
}
|
144 |
+
|
145 |
+
|
146 |
+
TASK_TYPES_WITH_LANGUAGES = {
|
147 |
+
"text-classification",
|
148 |
+
"token-classification",
|
149 |
+
"table-question-answering",
|
150 |
+
"question-answering",
|
151 |
+
"zero-shot-classification",
|
152 |
+
"translation",
|
153 |
+
"summarization",
|
154 |
+
"text-generation",
|
155 |
+
"text2text-generation",
|
156 |
+
"fill-mask",
|
157 |
+
"sentence-similarity",
|
158 |
+
"text-to-speech",
|
159 |
+
"automatic-speech-recognition",
|
160 |
+
"text-to-image",
|
161 |
+
"image-to-text",
|
162 |
+
"visual-question-answering",
|
163 |
+
"document-question-answering",
|
164 |
+
}
|
165 |
+
|
166 |
+
LABELS_REQUIRED_TASKS = {
|
167 |
+
"text-classification",
|
168 |
+
"token-classification",
|
169 |
+
"object-detection",
|
170 |
+
"audio-classification",
|
171 |
+
"image-classification",
|
172 |
+
"tabular-classification",
|
173 |
+
}
|
174 |
+
ALL_PIPELINES = {
|
175 |
+
"audio-classification",
|
176 |
+
"audio-to-audio",
|
177 |
+
"automatic-speech-recognition",
|
178 |
+
"conversational",
|
179 |
+
"depth-estimation",
|
180 |
+
"document-question-answering",
|
181 |
+
"feature-extraction",
|
182 |
+
"fill-mask",
|
183 |
+
"graph-ml",
|
184 |
+
"image-classification",
|
185 |
+
"image-segmentation",
|
186 |
+
"image-to-image",
|
187 |
+
"image-to-text",
|
188 |
+
"object-detection",
|
189 |
+
"question-answering",
|
190 |
+
"reinforcement-learning",
|
191 |
+
"robotics",
|
192 |
+
"sentence-similarity",
|
193 |
+
"summarization",
|
194 |
+
"table-question-answering",
|
195 |
+
"tabular-classification",
|
196 |
+
"tabular-regression",
|
197 |
+
"text-classification",
|
198 |
+
"text-generation",
|
199 |
+
"text-to-image",
|
200 |
+
"text-to-speech",
|
201 |
+
"text-to-video",
|
202 |
+
"text2text-generation",
|
203 |
+
"token-classification",
|
204 |
+
"translation",
|
205 |
+
"unconditional-image-generation",
|
206 |
+
"video-classification",
|
207 |
+
"visual-question-answering",
|
208 |
+
"voice-activity-detection",
|
209 |
+
"zero-shot-classification",
|
210 |
+
"zero-shot-image-classification",
|
211 |
+
}
|
212 |
+
|
213 |
+
|
214 |
+
@lru_cache(maxsize=None)
|
215 |
+
def generate_task_scores_dict():
|
216 |
+
task_scores = {}
|
217 |
+
for task in ALL_PIPELINES:
|
218 |
+
task_dict = COMMON_SCORES.copy()
|
219 |
+
if task in TASK_TYPES_WITH_LANGUAGES:
|
220 |
+
task_dict = {
|
221 |
+
**task_dict,
|
222 |
+
**{
|
223 |
+
"languages": {
|
224 |
+
"required": True,
|
225 |
+
"score": 2,
|
226 |
+
"missing_recommendation": (
|
227 |
+
"You haven't defined any languages in your metadata. This"
|
228 |
+
f" is usually recommned for {task} task"
|
229 |
+
),
|
230 |
+
}
|
231 |
+
},
|
232 |
+
}
|
233 |
+
if task in LABELS_REQUIRED_TASKS:
|
234 |
+
task_dict = {
|
235 |
+
**task_dict,
|
236 |
+
**{
|
237 |
+
"labels": {
|
238 |
+
"required": True,
|
239 |
+
"score": 2,
|
240 |
+
"missing_recommendation": (
|
241 |
+
"You haven't defined any labels in the config.json file"
|
242 |
+
f" these are usually recommended for {task}"
|
243 |
+
),
|
244 |
+
}
|
245 |
+
},
|
246 |
+
}
|
247 |
+
max_score = sum(value["score"] for value in task_dict.values())
|
248 |
+
task_dict["_max_score"] = max_score
|
249 |
+
task_scores[task] = task_dict
|
250 |
+
return task_scores
|
251 |
+
|
252 |
+
|
253 |
+
SCORES = generate_task_scores_dict()
|
254 |
+
|
255 |
+
|
256 |
+
@lru_cache(maxsize=None)
|
257 |
+
def basic_check(hub_id):
|
258 |
+
try:
|
259 |
+
data = ModelMetadata.from_hub(hub_id)
|
260 |
+
task = data.pipeline_tag
|
261 |
+
data_dict = asdict(data)
|
262 |
+
score = 0
|
263 |
+
if task:
|
264 |
+
task_scores = SCORES[task]
|
265 |
+
to_fix = {}
|
266 |
+
for k, v in task_scores.items():
|
267 |
+
if k.startswith("_"):
|
268 |
+
continue
|
269 |
+
if data_dict[k] is None:
|
270 |
+
to_fix[k] = task_scores[k]["missing_recommendation"]
|
271 |
+
if data_dict[k] is not None:
|
272 |
+
score += v["score"]
|
273 |
+
max_score = task_scores["_max_score"]
|
274 |
+
score = score / max_score
|
275 |
+
score_summary = (
|
276 |
+
f"Your model's metadata score is {round(score*100)}% based on suggested"
|
277 |
+
f" metadata for {task}"
|
278 |
+
)
|
279 |
+
recommendations = (
|
280 |
+
"Here are some suggestions to improve your model's metadata for"
|
281 |
+
f" {task}."
|
282 |
+
)
|
283 |
+
for v in to_fix.values():
|
284 |
+
recommendations += f"\n- {v}"
|
285 |
+
return score_summary + recommendations
|
286 |
+
except Exception as e:
|
287 |
+
print(e)
|
288 |
+
return None
|
289 |
+
|
290 |
+
|
291 |
+
print("caching models...")
|
292 |
+
print("getting top 5,000 models")
|
293 |
+
models = list_models(sort="downloads", direction=-1, limit=5_000)
|
294 |
+
model_ids = [model.modelId for model in models]
|
295 |
+
print("calculating metadata scores...")
|
296 |
+
thread_map(basic_check, model_ids)
|
297 |
+
|
298 |
+
|
299 |
+
gr.Interface(fn=basic_check, inputs="text", outputs="text").launch()
|