Spaces:
Runtime error
Runtime error
File size: 9,695 Bytes
104a4ce 5db5b18 104a4ce 9f4bace 104a4ce 9f4bace 104a4ce 9f4bace 104a4ce 9f4bace 104a4ce 0b8ef86 104a4ce 9f4bace dbb80f1 5db5b18 8afbdd4 c9bf28d 104a4ce da7c78c 104a4ce da7c78c 104a4ce 9f4bace 104a4ce 5db5b18 9f4bace 104a4ce 9f4bace 31639f7 9f4bace 31639f7 9f4bace 525c4ec 104a4ce c9bf28d 9f4bace 4419eab 104a4ce a6c5938 104a4ce a6c5938 525c4ec a6c5938 a3d216f a6c5938 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import datetime
import os
from dataclasses import asdict, dataclass
from functools import lru_cache
from json import JSONDecodeError
from typing import List, Optional, Union
import gradio as gr
import requests
from diskcache import Cache
from huggingface_hub import (
HfApi,
ModelCard,
hf_hub_url,
list_repo_commits,
logging,
model_info,
)
from huggingface_hub.utils import EntryNotFoundError, disable_progress_bars
disable_progress_bars()
logging.set_verbosity_error()
token = os.getenv("HF_TOKEN")
def get_model_labels(model):
try:
url = hf_hub_url(repo_id=model, filename="config.json")
return list(requests.get(url).json()["label2id"].keys())
except (KeyError, JSONDecodeError, AttributeError):
return None
@dataclass
class EngagementStats:
likes: int
downloads: int
created_at: datetime.datetime
def _get_engagement_stats(hub_id):
api = HfApi(token=token)
repo = api.repo_info(hub_id)
return EngagementStats(
likes=repo.likes,
downloads=repo.downloads,
created_at=list_repo_commits(hub_id, repo_type="model")[-1].created_at,
)
def _try_load_model_card(hub_id):
try:
card_text = ModelCard.load(hub_id, token=token).text
length = len(card_text)
except EntryNotFoundError:
card_text = None
length = None
return card_text, length
def _try_parse_card_data(hub_id):
data = {}
keys = ["license", "language", "datasets", "tags"]
for key in keys:
try:
value = model_info(hub_id, token=token).cardData[key]
data[key] = value
except (KeyError, AttributeError):
data[key] = None
return data
@dataclass
class ModelMetadata:
hub_id: str
tags: Optional[List[str]]
license: Optional[str]
library_name: Optional[str]
datasets: Optional[List[str]]
pipeline_tag: Optional[str]
labels: Optional[List[str]]
languages: Optional[Union[str, List[str]]]
engagement_stats: Optional[EngagementStats] = None
model_card_text: Optional[str] = None
model_card_length: Optional[int] = None
@classmethod
@lru_cache()
def from_hub(cls, hub_id):
model = model_info(hub_id)
card_text, length = _try_load_model_card(hub_id)
data = _try_parse_card_data(hub_id)
try:
library_name = model.library_name
except AttributeError:
library_name = None
# try:
# tags = model.tags
# except AttributeError:
# tags = None
try:
pipeline_tag = model.pipeline_tag
except AttributeError:
pipeline_tag = None
return ModelMetadata(
hub_id=hub_id,
languages=data["language"],
tags=data["tags"],
license=data["license"],
library_name=library_name,
datasets=data["datasets"],
pipeline_tag=pipeline_tag,
labels=get_model_labels(hub_id),
engagement_stats=_get_engagement_stats(hub_id),
model_card_text=card_text,
model_card_length=length,
)
COMMON_SCORES = {
"license": {
"required": True,
"score": 2,
"missing_recommendation": (
"You have not added a license to your models metadata"
),
},
"datasets": {
"required": False,
"score": 1,
"missing_recommendation": (
"You have not added any datasets to your models metadata"
),
},
"model_card_text": {
"required": True,
"score": 3,
"missing_recommendation": """You haven't created a model card for your model. It is strongly recommended to have a model card for your model. \nYou can create for your model by clicking [here](https://huggingface.co/HUB_ID/edit/main/README.md)""",
},
"tags": {
"required": False,
"score": 2,
"missing_recommendation": (
"You don't have any tags defined in your model metadata. Tags can help"
" people find relevant models on the Hub. You can create for your model by"
" clicking [here](https://huggingface.co/HUB_ID/edit/main/README.md)"
),
},
}
TASK_TYPES_WITH_LANGUAGES = {
"text-classification",
"token-classification",
"table-question-answering",
"question-answering",
"zero-shot-classification",
"translation",
"summarization",
"text-generation",
"text2text-generation",
"fill-mask",
"sentence-similarity",
"text-to-speech",
"automatic-speech-recognition",
"text-to-image",
"image-to-text",
"visual-question-answering",
"document-question-answering",
}
LABELS_REQUIRED_TASKS = {
"text-classification",
"token-classification",
"object-detection",
"audio-classification",
"image-classification",
"tabular-classification",
}
ALL_PIPELINES = {
"audio-classification",
"audio-to-audio",
"automatic-speech-recognition",
"conversational",
"depth-estimation",
"document-question-answering",
"feature-extraction",
"fill-mask",
"graph-ml",
"image-classification",
"image-segmentation",
"image-to-image",
"image-to-text",
"object-detection",
"question-answering",
"reinforcement-learning",
"robotics",
"sentence-similarity",
"summarization",
"table-question-answering",
"tabular-classification",
"tabular-regression",
"text-classification",
"text-generation",
"text-to-image",
"text-to-speech",
"text-to-video",
"text2text-generation",
"token-classification",
"translation",
"unconditional-image-generation",
"video-classification",
"visual-question-answering",
"voice-activity-detection",
"zero-shot-classification",
"zero-shot-image-classification",
}
@lru_cache(maxsize=None)
def generate_task_scores_dict():
task_scores = {}
for task in ALL_PIPELINES:
task_dict = COMMON_SCORES.copy()
if task in TASK_TYPES_WITH_LANGUAGES:
task_dict = {
**task_dict,
**{
"languages": {
"required": True,
"score": 2,
"missing_recommendation": (
"You haven't defined any languages in your metadata. This"
f" is usually recommend for {task} task"
),
}
},
}
if task in LABELS_REQUIRED_TASKS:
task_dict = {
**task_dict,
**{
"labels": {
"required": True,
"score": 2,
"missing_recommendation": (
"You haven't defined any labels in the config.json file"
f" these are usually recommended for {task}"
),
}
},
}
max_score = sum(value["score"] for value in task_dict.values())
task_dict["_max_score"] = max_score
task_scores[task] = task_dict
return task_scores
SCORES = generate_task_scores_dict()
cache = Cache("/data/")
@cache.memoize(expire=60 * 60 * 24) # expires after 24 hours
def _basic_check(hub_id):
try:
data = ModelMetadata.from_hub(hub_id)
score = 0
if task := data.pipeline_tag:
task_scores = SCORES[task]
to_fix = {}
data_dict = asdict(data)
for k, v in task_scores.items():
if k.startswith("_"):
continue
if data_dict[k] is None:
to_fix[k] = task_scores[k]["missing_recommendation"].replace(
"HUB_ID", hub_id
)
if data_dict[k] is not None:
score += v["score"]
max_score = task_scores["_max_score"]
score = score / max_score
(
f"Your model's metadata score is {round(score*100)}% based on suggested"
f" metadata for {task}. \n"
)
# recommendations = []
if to_fix:
recommendations = (
"Here are some suggestions to improve your model's metadata for"
f" {task}: \n"
)
for v in to_fix.values():
recommendations += f"\n- {v}"
return score
# return (
# score_summary + recommendations if recommendations else score_summary
# )
except Exception as e:
print(e)
return None
def basic_check(hub_id):
return _basic_check(hub_id)
# print("caching models...")
# print("getting top 5,000 models")
# models = list_models(sort="downloads", direction=-1, limit=5_000)
# model_ids = [model.modelId for model in models]
# print("calculating metadata scores...")
# thread_map(basic_check, model_ids)
with gr.Blocks() as demo:
gr.Markdown(
"""
# Model Metadata Checker
This app will check your model's metadata for a few common issues."""
)
with gr.Row():
text = gr.Text(label="Model ID")
button = gr.Button(label="Check", type="submit")
with gr.Row():
gr.Markdown("Results")
markdown = gr.Number()
button.click(_basic_check, text, markdown)
demo.queue(concurrency_count=8, max_size=5)
demo.launch()
# gr.Interface(fn=basic_check, inputs="text", outputs="markdown").launch(debug=True)
|