File size: 8,653 Bytes
104a4ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9bf28d
104a4ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4159b15
104a4ce
31639f7
 
 
 
 
 
 
 
2519c50
104a4ce
 
 
 
 
c9bf28d
 
 
4419eab
 
 
 
 
 
104a4ce
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import datetime
import os
from dataclasses import asdict, dataclass
from functools import lru_cache
from json import JSONDecodeError
from typing import List, Optional, Union

import gradio as gr
import requests
from huggingface_hub import (
    HfApi,
    ModelCard,
    hf_hub_url,
    list_models,
    list_repo_commits,
    logging,
    model_info,
)
from huggingface_hub.utils import EntryNotFoundError, disable_progress_bars
from tqdm.contrib.concurrent import thread_map

disable_progress_bars()

logging.set_verbosity_error()

token = os.getenv("HF_TOKEN")


def get_model_labels(model):
    try:
        url = hf_hub_url(repo_id=model, filename="config.json")
        return list(requests.get(url).json()["label2id"].keys())
    except (KeyError, JSONDecodeError, AttributeError):
        return None


@dataclass
class EngagementStats:
    likes: int
    downloads: int
    created_at: datetime.datetime


def _get_engagement_stats(hub_id):
    api = HfApi(token=token)
    repo = api.repo_info(hub_id)
    return EngagementStats(
        likes=repo.likes,
        downloads=repo.downloads,
        created_at=list_repo_commits(hub_id, repo_type="model")[-1].created_at,
    )


def _try_load_model_card(hub_id):
    try:
        card_text = ModelCard.load(hub_id, token=token).text
        length = len(card_text)
    except EntryNotFoundError:
        card_text = None
        length = None
    return card_text, length


def _try_parse_card_data(hub_id):
    data = {}
    keys = ["license", "language", "datasets"]
    for key in keys:
        try:
            value = model_info(hub_id, token=token).cardData[key]
            data[key] = value
        except (KeyError, AttributeError):
            data[key] = None
    return data


@dataclass
class ModelMetadata:
    hub_id: str
    tags: Optional[List[str]]
    license: Optional[str]
    library_name: Optional[str]
    datasets: Optional[List[str]]
    pipeline_tag: Optional[str]
    labels: Optional[List[str]]
    languages: Optional[Union[str, List[str]]]
    engagement_stats: Optional[EngagementStats] = None
    model_card_text: Optional[str] = None
    model_card_length: Optional[int] = None

    @classmethod
    @lru_cache()
    def from_hub(cls, hub_id):
        model = model_info(hub_id)
        card_text, length = _try_load_model_card(hub_id)
        data = _try_parse_card_data(hub_id)
        try:
            library_name = model.library_name
        except AttributeError:
            library_name = None
        try:
            tags = model.tags
        except AttributeError:
            tags = None
        try:
            pipeline_tag = model.pipeline_tag
        except AttributeError:
            pipeline_tag = None
        return ModelMetadata(
            hub_id=hub_id,
            languages=data["language"],
            tags=tags,
            license=data["license"],
            library_name=library_name,
            datasets=data["datasets"],
            pipeline_tag=pipeline_tag,
            labels=get_model_labels(hub_id),
            engagement_stats=_get_engagement_stats(hub_id),
            model_card_text=card_text,
            model_card_length=length,
        )


COMMON_SCORES = {
    "license": {
        "required": True,
        "score": 2,
        "missing_recommendation": (
            "You have not added a license to your models metadata"
        ),
    },
    "datasets": {
        "required": False,
        "score": 1,
        "missing_recommendation": (
            "You have not added any datasets to your models metadata"
        ),
    },
    "model_card_text": {
        "required": True,
        "score": 3,
        "missing_recommendation": """You haven't created a model card for your model. It is strongly recommended to have a model card for your model. \nYou can create for your model by clicking [here](https://huggingface.co/HUB_ID/edit/main/README.md)""",
    },
}


TASK_TYPES_WITH_LANGUAGES = {
    "text-classification",
    "token-classification",
    "table-question-answering",
    "question-answering",
    "zero-shot-classification",
    "translation",
    "summarization",
    "text-generation",
    "text2text-generation",
    "fill-mask",
    "sentence-similarity",
    "text-to-speech",
    "automatic-speech-recognition",
    "text-to-image",
    "image-to-text",
    "visual-question-answering",
    "document-question-answering",
}

LABELS_REQUIRED_TASKS = {
    "text-classification",
    "token-classification",
    "object-detection",
    "audio-classification",
    "image-classification",
    "tabular-classification",
}
ALL_PIPELINES = {
    "audio-classification",
    "audio-to-audio",
    "automatic-speech-recognition",
    "conversational",
    "depth-estimation",
    "document-question-answering",
    "feature-extraction",
    "fill-mask",
    "graph-ml",
    "image-classification",
    "image-segmentation",
    "image-to-image",
    "image-to-text",
    "object-detection",
    "question-answering",
    "reinforcement-learning",
    "robotics",
    "sentence-similarity",
    "summarization",
    "table-question-answering",
    "tabular-classification",
    "tabular-regression",
    "text-classification",
    "text-generation",
    "text-to-image",
    "text-to-speech",
    "text-to-video",
    "text2text-generation",
    "token-classification",
    "translation",
    "unconditional-image-generation",
    "video-classification",
    "visual-question-answering",
    "voice-activity-detection",
    "zero-shot-classification",
    "zero-shot-image-classification",
}


@lru_cache(maxsize=None)
def generate_task_scores_dict():
    task_scores = {}
    for task in ALL_PIPELINES:
        task_dict = COMMON_SCORES.copy()
        if task in TASK_TYPES_WITH_LANGUAGES:
            task_dict = {
                **task_dict,
                **{
                    "languages": {
                        "required": True,
                        "score": 2,
                        "missing_recommendation": (
                            "You haven't defined any languages in your metadata. This"
                            f" is usually recommned for {task} task"
                        ),
                    }
                },
            }
        if task in LABELS_REQUIRED_TASKS:
            task_dict = {
                **task_dict,
                **{
                    "labels": {
                        "required": True,
                        "score": 2,
                        "missing_recommendation": (
                            "You haven't defined any labels in the config.json file"
                            f" these are usually recommended for {task}"
                        ),
                    }
                },
            }
        max_score = sum(value["score"] for value in task_dict.values())
        task_dict["_max_score"] = max_score
        task_scores[task] = task_dict
    return task_scores


SCORES = generate_task_scores_dict()

@lru_cache(maxsize=None)
def _basic_check(hub_id):
    try:
        data = ModelMetadata.from_hub(hub_id)
        task = data.pipeline_tag
        data_dict = asdict(data)
        score = 0
        if task:
            task_scores = SCORES[task]
            to_fix = {}
            for k, v in task_scores.items():
                if k.startswith("_"):
                    continue
                if data_dict[k] is None:
                    to_fix[k] = task_scores[k]["missing_recommendation"]
                if data_dict[k] is not None:
                    score += v["score"]
            max_score = task_scores["_max_score"]
            score = score / max_score
            score_summary = (
                f"Your model's metadata score is {round(score*100)}% based on suggested metadata for {task}"
            )
            recommendations = None
            if to_fix:
                recommendations = (
                    "Here are some suggestions to improve your model's metadata for"
                    f" {task}."
                )
                for v in to_fix.values():
                    recommendations += f"\n- {v}"
            return score_summary + recommendations if recommendations else score_summary
    except Exception as e:
        print(e)
        return None


def basic_check(hub_id):
    return _basic_check(hub_id)

# print("caching models...")
# print("getting top 5,000 models")
# models = list_models(sort="downloads", direction=-1, limit=5_000)
# model_ids = [model.modelId for model in models]
# print("calculating metadata scores...")
# thread_map(basic_check, model_ids)


gr.Interface(fn=basic_check, inputs="text", outputs="text").launch()