File size: 8,666 Bytes
45e69ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e47aaa6
45e69ef
5de4570
 
 
45e69ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5de4570
45e69ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5de4570
45e69ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5de4570
45e69ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import json
import os
from typing import Literal

import openai
from llama_index.core import (
    Document,
    Settings,
    SimpleDirectoryReader,
    StorageContext,
    VectorStoreIndex,
    load_index_from_storage,
)
from llama_index.core.node_parser import (
    HierarchicalNodeParser,
    SentenceWindowNodeParser,
    get_leaf_nodes,
)
from llama_index.core.postprocessor import (
    MetadataReplacementPostProcessor,
    SentenceTransformerRerank,
)
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.retrievers import AutoMergingRetriever
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.openai import OpenAI

from src.mythesis_chatbot.utils import get_config_hash, get_openai_api_key

SupportedRags = Literal[
    "classic retrieval", "sentence window retrieval", "auto-merging retrieval"
]
SupportedOpenAIllms = Literal["gpt-4o-mini", "gpt-3.5-turbo"]
SupportedEmbedModels = Literal["BAAI/bge-small-en-v1.5"]
SupportedRerankModels = Literal["cross-encoder/ms-marco-MiniLM-L-2-v2"]


def load_data(input_file: str) -> Document:

    reader = SimpleDirectoryReader(input_files=[input_file])
    documents = reader.load_data()  # List of Document objects (one object per page)
    # Merge into single document
    document = Document(text="\n\n".join([doc.text for doc in documents]))

    return document


def build_sentence_window_index(
    input_file: str,
    save_dir: str,
    index_config: dict[str, str | int],
):
    config_hash = get_config_hash(index_config)
    save_dir = os.path.join(save_dir, "sentence_window", config_hash)

    Settings.embed_model = HuggingFaceEmbedding(model_name=index_config["embed_model"])

    if not os.path.exists(save_dir):

        document = load_data(input_file)

        # Create the sentence window node parser w/ default settings.
        # A node is a chunck of text. Each node returned by the sentence window node
        # parser also contains its context as metadata (closest chuncks of texts)
        node_parser = SentenceWindowNodeParser.from_defaults(
            window_size=index_config["sentence_window_size"],
            window_metadata_key="window",
            original_text_metadata_key="original_text",
        )

        Settings.node_parser = node_parser

        sentence_index = VectorStoreIndex.from_documents([document])
        sentence_index.storage_context.persist(persist_dir=save_dir)
        with open(os.path.join(save_dir, "meta.json"), "w") as f:
            json.dump(index_config, f, indent=2)

    else:
        sentence_index = load_index_from_storage(
            StorageContext.from_defaults(persist_dir=save_dir)
        )

    return sentence_index


def build_automerging_index(
    input_file: str,
    save_dir: str,
    index_config: dict[str, str | list[int]],
):

    config_hash = get_config_hash(index_config)
    save_dir = os.path.join(save_dir, "auto_merging", config_hash)

    Settings.embed_model = HuggingFaceEmbedding(model_name=index_config["embed_model"])

    if not os.path.exists(save_dir):

        document = load_data(input_file)
        node_parser = HierarchicalNodeParser.from_defaults(
            chunk_sizes=index_config["chunk_sizes"]
        )
        nodes = node_parser.get_nodes_from_documents([document])
        leaf_nodes = get_leaf_nodes(nodes)

        Settings.node_parser = node_parser

        storage_context = StorageContext.from_defaults()
        storage_context.docstore.add_documents(nodes)

        automerging_index = VectorStoreIndex(
            leaf_nodes,
            storage_context=storage_context,
        )
        automerging_index.storage_context.persist(persist_dir=save_dir)
        with open(os.path.join(save_dir, "meta.json"), "w") as f:
            json.dump(index_config, f, indent=2)

    else:
        automerging_index = load_index_from_storage(
            StorageContext.from_defaults(persist_dir=save_dir),
        )
    return automerging_index


def get_sentence_window_query_engine(
    sentence_index,
    similarity_top_k: int = 6,
    rerank_top_n: int = 2,
    rerank_model: str = "cross-encoder/ms-marco-MiniLM-L-2-v2",
):
    # Used to replace the node content with a field from the node metadata.
    postproc = MetadataReplacementPostProcessor(target_metadata_key="window")

    # Rerank can speed up an LLM query without sacrificing accuracy. It does so by
    # pruning away irrelevant nodes from the context.
    rerank = SentenceTransformerRerank(top_n=rerank_top_n, model=rerank_model)

    sentence_window_engine = sentence_index.as_query_engine(
        similarity_top_k=similarity_top_k, node_postprocessors=[postproc, rerank]
    )
    return sentence_window_engine


def get_automerging_query_engine(
    automerging_index,
    similarity_top_k: int = 12,
    rerank_top_n: int = 6,
    rerank_model: str = "cross-encoder/ms-marco-MiniLM-L-2-v2",
):
    base_retriever = automerging_index.as_retriever(similarity_top_k=similarity_top_k)
    retriever = AutoMergingRetriever(
        base_retriever, automerging_index.storage_context, verbose=True
    )
    rerank = SentenceTransformerRerank(top_n=rerank_top_n, model=rerank_model)
    auto_merging_engine = RetrieverQueryEngine.from_args(
        retriever, node_postprocessors=[rerank]
    )
    return auto_merging_engine


def sentence_window_retrieval_setup(
    input_file: str,
    save_dir: str,
    llm_openai_model: SupportedOpenAIllms = "gpt-4o-mini",
    temperature: float = 0.1,
    embed_model: SupportedEmbedModels = "BAAI/bge-small-en-v1.5",
    sentence_window_size: int = 3,
    similarity_top_k: int = 6,
    rerank_model: SupportedRerankModels = "cross-encoder/ms-marco-MiniLM-L-2-v2",
    rerank_top_n: int = 2,
    **kwargs
):

    openai.api_key = get_openai_api_key()

    # This allows to uniquely identify the index
    config = {
        "doc_source": os.path.basename(input_file),
        "embed_model": embed_model,
        "sentence_window_size": sentence_window_size,
    }

    # 1. Build index
    index = build_sentence_window_index(input_file, save_dir, config)

    Settings.llm = OpenAI(model=llm_openai_model, temperature=temperature)

    # 2. Get engine
    sentence_window_engine = get_sentence_window_query_engine(
        index,
        similarity_top_k=similarity_top_k,
        rerank_model=rerank_model,
        rerank_top_n=rerank_top_n,
    )

    return sentence_window_engine


def automerging_retrieval_setup(
    input_file: str,
    save_dir: str,
    llm_openai_model: SupportedOpenAIllms = "gpt-4o-mini",
    temperature: float = 0.1,
    embed_model: SupportedEmbedModels = "BAAI/bge-small-en-v1.5",
    chunk_sizes=[2048, 512, 128],
    similarity_top_k: int = 6,
    rerank_model: SupportedRerankModels = "cross-encoder/ms-marco-MiniLM-L-2-v2",
    rerank_top_n: int = 2,
    **kwargs
):
    openai.api_key = get_openai_api_key()

    # This allows to uniquely identify the index
    config = {
        "doc_source": os.path.basename(input_file),
        "embed_model": embed_model,
        "chunk_sizes": chunk_sizes,
    }

    # 1. Build index
    index = build_automerging_index(input_file, save_dir, config)

    Settings.llm = OpenAI(model=llm_openai_model, temperature=temperature)

    # 2. Get engine
    automerging_engine = get_sentence_window_query_engine(
        index,
        similarity_top_k=similarity_top_k,
        rerank_model=rerank_model,
        rerank_top_n=rerank_top_n,
    )

    return automerging_engine


def basic_rag_setup(
    input_file: str,
    save_dir: str,
    llm_openai_model: SupportedOpenAIllms = "gpt-4o-mini",
    temperature: float = 0.1,
    embed_model: SupportedEmbedModels = "BAAI/bge-small-en-v1.5",
    similarity_top_k: int = 6,
    rerank_model: SupportedRerankModels = "cross-encoder/ms-marco-MiniLM-L-2-v2",
    rerank_top_n: int = 2,
    **kwargs
):
    openai.api_key = get_openai_api_key()

    Settings.embed_model = HuggingFaceEmbedding(model_name=embed_model)

    save_dir = os.path.join(save_dir, "basic")
    if not os.path.exists(save_dir):
        document = load_data(input_file)
        index = VectorStoreIndex.from_documents([document])
        index.storage_context.persist(persist_dir=save_dir)
    else:
        index = load_index_from_storage(
            StorageContext.from_defaults(persist_dir=save_dir)
        )

    rerank = SentenceTransformerRerank(top_n=rerank_top_n, model=rerank_model)

    engine = index.as_query_engine(
        llm=OpenAI(model=llm_openai_model, temperature=temperature),
        similarity_top_k=similarity_top_k,
        node_postprocessors=[rerank],
    )
    return engine