Spaces:
Sleeping
Sleeping
updated source code
Browse files
src/mythesis_chatbot/evaluation.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
from tqdm import tqdm
|
5 |
+
from trulens.apps.llamaindex import TruLlama
|
6 |
+
from trulens.core import Feedback
|
7 |
+
from trulens.providers.openai import OpenAI
|
8 |
+
|
9 |
+
from mythesis_chatbot.utils import get_config_hash
|
10 |
+
|
11 |
+
|
12 |
+
def run_evals(eval_questions_path: Path, tru_recorder, query_engine):
|
13 |
+
|
14 |
+
eval_questions = []
|
15 |
+
with open(eval_questions_path) as file:
|
16 |
+
for line in file:
|
17 |
+
item = line.strip()
|
18 |
+
eval_questions.append(item)
|
19 |
+
|
20 |
+
for question in tqdm(eval_questions):
|
21 |
+
with tru_recorder as recording: # noqa: F841
|
22 |
+
response = query_engine.query(question) # noqa: F841
|
23 |
+
|
24 |
+
|
25 |
+
# Feedback function
|
26 |
+
def f_answer_relevance(provider=OpenAI(), name="Answer Relevance"):
|
27 |
+
return Feedback(provider.relevance_with_cot_reasons, name=name).on_input_output()
|
28 |
+
|
29 |
+
|
30 |
+
# Feedback function
|
31 |
+
def f_context_relevance(
|
32 |
+
provider=OpenAI(),
|
33 |
+
context=TruLlama.select_source_nodes().node.text,
|
34 |
+
name="Context Relevance",
|
35 |
+
):
|
36 |
+
return (
|
37 |
+
Feedback(provider.relevance, name=name)
|
38 |
+
.on_input()
|
39 |
+
.on(context)
|
40 |
+
.aggregate(np.mean)
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
# Feedback function
|
45 |
+
def f_groundedness(
|
46 |
+
provider=OpenAI(),
|
47 |
+
context=TruLlama.select_source_nodes().node.text,
|
48 |
+
name="Groundedness",
|
49 |
+
):
|
50 |
+
return (
|
51 |
+
Feedback(
|
52 |
+
provider.groundedness_measure_with_cot_reasons,
|
53 |
+
name=name,
|
54 |
+
)
|
55 |
+
.on(context)
|
56 |
+
.on_output()
|
57 |
+
)
|
58 |
+
|
59 |
+
|
60 |
+
def get_prebuilt_trulens_recorder(
|
61 |
+
query_engine, query_engine_config: dict[str, str | int]
|
62 |
+
):
|
63 |
+
app_name = query_engine_config["rag_mode"]
|
64 |
+
app_version = get_config_hash(query_engine_config)
|
65 |
+
|
66 |
+
tru_recorder = TruLlama(
|
67 |
+
query_engine,
|
68 |
+
app_name=app_name,
|
69 |
+
app_version=app_version,
|
70 |
+
metadata=query_engine_config,
|
71 |
+
feedbacks=[f_answer_relevance(), f_context_relevance(), f_groundedness()],
|
72 |
+
)
|
73 |
+
return tru_recorder
|
src/mythesis_chatbot/rag_setup.py
CHANGED
@@ -25,9 +25,11 @@ from llama_index.core.retrievers import AutoMergingRetriever
|
|
25 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
26 |
from llama_index.llms.openai import OpenAI
|
27 |
|
28 |
-
from
|
29 |
|
30 |
-
SupportedRags = Literal[
|
|
|
|
|
31 |
SupportedOpenAIllms = Literal["gpt-4o-mini", "gpt-3.5-turbo"]
|
32 |
SupportedEmbedModels = Literal["BAAI/bge-small-en-v1.5"]
|
33 |
SupportedRerankModels = Literal["cross-encoder/ms-marco-MiniLM-L-2-v2"]
|
@@ -167,6 +169,7 @@ def sentence_window_retrieval_setup(
|
|
167 |
similarity_top_k: int = 6,
|
168 |
rerank_model: SupportedRerankModels = "cross-encoder/ms-marco-MiniLM-L-2-v2",
|
169 |
rerank_top_n: int = 2,
|
|
|
170 |
):
|
171 |
|
172 |
openai.api_key = get_openai_api_key()
|
@@ -204,6 +207,7 @@ def automerging_retrieval_setup(
|
|
204 |
similarity_top_k: int = 6,
|
205 |
rerank_model: SupportedRerankModels = "cross-encoder/ms-marco-MiniLM-L-2-v2",
|
206 |
rerank_top_n: int = 2,
|
|
|
207 |
):
|
208 |
openai.api_key = get_openai_api_key()
|
209 |
|
@@ -239,6 +243,7 @@ def basic_rag_setup(
|
|
239 |
similarity_top_k: int = 6,
|
240 |
rerank_model: SupportedRerankModels = "cross-encoder/ms-marco-MiniLM-L-2-v2",
|
241 |
rerank_top_n: int = 2,
|
|
|
242 |
):
|
243 |
openai.api_key = get_openai_api_key()
|
244 |
|
|
|
25 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
26 |
from llama_index.llms.openai import OpenAI
|
27 |
|
28 |
+
from mythesis_chatbot.utils import get_config_hash, get_openai_api_key
|
29 |
|
30 |
+
SupportedRags = Literal[
|
31 |
+
"classic retrieval", "sentence window retrieval", "auto-merging retrieval"
|
32 |
+
]
|
33 |
SupportedOpenAIllms = Literal["gpt-4o-mini", "gpt-3.5-turbo"]
|
34 |
SupportedEmbedModels = Literal["BAAI/bge-small-en-v1.5"]
|
35 |
SupportedRerankModels = Literal["cross-encoder/ms-marco-MiniLM-L-2-v2"]
|
|
|
169 |
similarity_top_k: int = 6,
|
170 |
rerank_model: SupportedRerankModels = "cross-encoder/ms-marco-MiniLM-L-2-v2",
|
171 |
rerank_top_n: int = 2,
|
172 |
+
**kwargs
|
173 |
):
|
174 |
|
175 |
openai.api_key = get_openai_api_key()
|
|
|
207 |
similarity_top_k: int = 6,
|
208 |
rerank_model: SupportedRerankModels = "cross-encoder/ms-marco-MiniLM-L-2-v2",
|
209 |
rerank_top_n: int = 2,
|
210 |
+
**kwargs
|
211 |
):
|
212 |
openai.api_key = get_openai_api_key()
|
213 |
|
|
|
243 |
similarity_top_k: int = 6,
|
244 |
rerank_model: SupportedRerankModels = "cross-encoder/ms-marco-MiniLM-L-2-v2",
|
245 |
rerank_top_n: int = 2,
|
246 |
+
**kwargs
|
247 |
):
|
248 |
openai.api_key = get_openai_api_key()
|
249 |
|
src/mythesis_chatbot/run_evaluation.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# %%
|
2 |
+
import os
|
3 |
+
import pandas as pd
|
4 |
+
import nest_asyncio
|
5 |
+
import sys
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
sys.path.append(str(Path(__file__).resolve().parents[1]))
|
9 |
+
|
10 |
+
from mythesis_chatbot import evaluation
|
11 |
+
from trulens.core import TruSession
|
12 |
+
from mythesis_chatbot.rag_setup import (
|
13 |
+
sentence_window_retrieval_setup,
|
14 |
+
)
|
15 |
+
import yaml
|
16 |
+
from trulens.dashboard.display import get_feedback_result
|
17 |
+
from trulens.dashboard import run_dashboard
|
18 |
+
|
19 |
+
# %%
|
20 |
+
|
21 |
+
with open(os.path.join("../../configs", "sentence_window.yaml"), "r") as f:
|
22 |
+
config = yaml.safe_load(f)
|
23 |
+
|
24 |
+
engine = sentence_window_retrieval_setup(
|
25 |
+
input_file="../../data/Master_Thesis.pdf", save_dir="../../data/indices", **config
|
26 |
+
)
|
27 |
+
|
28 |
+
# database_url=os.getenv("SUPABASE_CONNECTION_STRING")
|
29 |
+
tru = TruSession(database_url=os.getenv("SUPABASE_CONNECTION_STRING"))
|
30 |
+
tru.reset_database()
|
31 |
+
nest_asyncio.apply()
|
32 |
+
|
33 |
+
|
34 |
+
# %%
|
35 |
+
|
36 |
+
tru_recorder = evaluation.get_prebuilt_trulens_recorder(engine, config)
|
37 |
+
# %%
|
38 |
+
|
39 |
+
query = "Why?"
|
40 |
+
with tru_recorder as recording: # noqa: F841
|
41 |
+
response = engine.query(query) # noqa: F841
|
42 |
+
|
43 |
+
# %%
|
44 |
+
database = tru_recorder.db
|
45 |
+
|
46 |
+
# %%
|
47 |
+
|
48 |
+
rec = recording.get()
|
49 |
+
# get_feedback_result(rec, "Context Relevance")
|
50 |
+
|
51 |
+
for feedback, feedback_result in rec.wait_for_feedback_results().items():
|
52 |
+
print(feedback.name, feedback_result.result)
|
53 |
+
# database.insert_feedback(feedback_result)
|
54 |
+
|
55 |
+
|
56 |
+
# %%
|
57 |
+
evaluation.run_evals(
|
58 |
+
os.path.join("../../data/", "eval_questions.txt"), tru_recorder, engine
|
59 |
+
)
|
60 |
+
|
61 |
+
# %%
|
62 |
+
records, feedback = tru.get_records_and_feedback(app_ids=[])
|
63 |
+
records.head()
|
64 |
+
# %%
|
65 |
+
pd.set_option("display.max_colwidth", None)
|
66 |
+
records[["input", "output"] + feedback]
|
67 |
+
# %%
|
68 |
+
|
69 |
+
tru.get_leaderboard(app_ids=[])
|
70 |
+
# %%
|
71 |
+
tru.run_dashboard()
|