File size: 11,419 Bytes
a80de29
 
3a09e7a
a80de29
 
 
 
 
 
 
 
 
 
f15e042
a80de29
 
 
6d8b074
e2de889
 
bd8fda7
a80de29
e2de889
 
 
 
 
 
 
 
a80de29
 
 
 
 
 
e90acd4
 
 
 
 
 
a80de29
 
 
 
 
 
 
 
e90acd4
a80de29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
067f1fd
 
 
 
 
 
 
 
 
 
 
 
a80de29
 
 
 
 
 
 
 
 
 
 
 
 
e90acd4
a80de29
 
 
 
 
 
 
 
 
 
7b46102
a80de29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b46102
a80de29
 
 
 
 
 
 
 
 
 
e2de889
a80de29
 
 
067f1fd
 
a80de29
 
 
 
 
 
e2de889
a80de29
 
 
3a09e7a
a80de29
 
 
 
 
067f1fd
 
 
a80de29
 
c205b58
a80de29
 
 
 
 
 
c205b58
a80de29
 
 
 
e2de889
a80de29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9705ae6
a80de29
248b7a5
 
 
 
 
 
 
 
 
 
 
 
 
 
9705ae6
 
 
 
 
 
a80de29
 
 
 
 
 
 
 
 
 
 
 
0abd578
a80de29
 
 
 
 
 
 
 
 
 
 
e2de889
 
 
 
 
 
 
 
a80de29
 
 
 
 
 
 
 
 
 
 
 
 
e2de889
a80de29
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
MODEL_INFO = ["Model"]
AVGACC = "Overall Acc."
TASK_INFO = [AVGACC, "Dynamic Perception","State Transitions Perception","Comparison Reasoning","Reasoning with External Knowledge","Explanatory Reasoning","Predictive Reasoning","Description","Counterfactual Reasoning","Camera Movement Perception"]

DATA_TITILE_TYPE = ["markdown", "number", "number", "number", "number", "number", "number", "number", "number", "number", "number"]
CSV_DIR = "./file/result.csv"

COLUMN_NAMES = MODEL_INFO + TASK_INFO
GT_PATH = "./file/AUTO-EVAL-VIDEO.json"
JSON_DATASET_PATH = "./file/userdata.json"
LEADERBORAD_INTRODUCTION = """# AutoEval-Video Leaderboard
    
    Welcome to the leaderboard of AutoEval-Video!
    AutoEval-Video comprises 327 complex open-ended video-question instances that span across nine skill dimensions, which address video-specific perception, comprehension, and generation skills. Please refer to our [paper](https://arxiv.org/abs/2311.14906) for more details.
    """

SUBMIT_INTRODUCTION = """# Submit Introduction
1. Format your model output as a JSON file, following the example provided in our [GitHub repository](https://github.com/Xiuyuan-Chen/AutoEval-Video/blob/main/prediction_sample.json).
2. Assign a unique "model name" for your results.
3. Include the link to your model's repository with each submission.
4. After clicking "Evaluate", allow approximately one hour for your model's results to be processed. To view the most recent results in the leaderboard, click "Refresh".
"""
# SUBMIT_INTRODUCTION = """# Submit Introduction
#     For example, if you want to upload GPT-4V's result in the leaderboard, you need to:
#     1. Fill in 'GPT-4V' in 'Model Name' if it is your first time to submit your result. Alternatively, if you wish to modify the outcomes of your model, please add a version suffix after the model's name like 'GPT-4V_v2'.
#     2. Upload results.json.
#     3. Click the 'Evaluate' button.
#     4. Click 'Refresh' to obtain the uploaded leaderboard.
#     5. The evaluation results of your model will be given in the "Overall Acc." box. For results specific to each evaluation dimension, please refer back to the leaderboard.
# """

TABLE_INTRODUCTION = """The table below shows the performance of various models on different evaluation dimensions on AutoEval-Video.
        We use accuracy(%) as the primary evaluation metric for each dimension. 
    """

CITATION_BUTTON_LABEL = "If you find AutoEval-Video useful for your research and applications, please copy the following snippet to cite these results: "
CITATION_BUTTON_TEXT = """@article{chen2023autoevalvideo,
      title={AutoEval-Video: An Automatic Benchmark for Assessing Large Vision Language Models in Open-Ended Video Question Answering}, 
      author={Xiuyuan Chen and Yuan Lin and Yuchen Zhang and Weiran Huang},
      year={2023},
      journal={arXiv preprint arXiv:2311.14906}
}"""
style = """<style>
    .dataframe-container {
        overflow-x: auto;
    }
</style>"""
import gradio as gr
import pandas as pd
import json
from tqdm import tqdm
import time
import random
from huggingface_hub import CommitScheduler, login
import os
from openai import OpenAI
from tool import *

global data_component
login(token=os.environ.get("HF_TOKEN"), write_permission=True)


def get_result_df():
    df = pd.read_csv(CSV_DIR)[COLUMN_NAMES]
    df = df.sort_values(by=AVGACC, ascending=False)
    return df
    
def check_json(prediction_content):
    
    predictions = prediction_content.split("\n")
    for prediction in predictions:
        try:
            prediction = json.loads(prediction)
        except json.JSONDecodeError:
            print(f"Warning: Skipping invalid JSON data in line: {prediction}")
            return False
    return True
    
def prediction_analyse(prediction_content,questiontype_list):
    predictions = prediction_content.split("\n")

    ground_truth_data = []
    with open("./file/AUTO-EVAL-VIDEO.json", "r") as f:
        for line in f :
            data = json.loads(line.strip())
            ground_truth_data.append(data)

    id2item = {str(item["ID"]): item for item in ground_truth_data}

    results = {i: {"correct": 0, "total": 0} for i in questiontype_list}

    for prediction in tqdm(predictions):
        # pdb.set_trace()
        prediction = prediction.strip()
        if not prediction:
            continue
        try:
            prediction = json.loads(prediction)
        except json.JSONDecodeError:
            print(f"Warning: Skipping invalid JSON data in line: {prediction}")
            continue
        question_id = str(prediction["ID"])
        print("Evaluating ID: " + question_id)
        item_gt = id2item[question_id]
        rule = item_gt['Rule']
        question_type = item_gt["Dimension"]

        pre_output = prediction["prediction"]
        if "judge" in list(prediction.keys()):
            judge_result_bit = prediction["judge"]
        else:
            _, judge_result_bit = alternate_judge(rule, pre_output, os.environ.get("yuan_api"))
        assert judge_result_bit in ["0", "1"], "Invalid judge result bit!"
        if judge_result_bit == "1":
            results[question_type]["correct"] += 1

        results[question_type]["total"] += 1
    return results



scheduler = CommitScheduler(
    repo_id="AUTOEVAL-Video-Backup",
    private=True,
    repo_type="dataset",
    folder_path="./file",
    path_in_repo="data",
    every=5,
)

def save_json(modelname, user_dict_list):
    with open(JSON_DATASET_PATH, "a") as f:
        json.dump({modelname:user_dict_list}, f)
        f.write('\n')

def add_new_eval(
    input_file,
    model_name_textbox: str,
    model_link: str
):
    if len(model_name_textbox) == 0:
        return "Error! Empty model name!", get_result_df()
    if len(model_link) == 0:
        return "Error! Empty model link!", get_result_df()
        
    if input_file is None:
        return "Error! Empty file!", get_result_df()
    else:
        csv_data = pd.read_csv(CSV_DIR, dtype={'Model': str})
        model_name_list = list(csv_data['Model'])
        model_name_list = [name.split(']')[0][1:] for name in model_name_list]
        if model_name_textbox in model_name_list:
            return "In the leaderboard, there already exists a model with the same name, and duplicate submissions of it are not allowed.", get_result_df()
        
        questiontype = COLUMN_NAMES[-9:]
        id2questiontype = dict(zip(range(1, 10),questiontype))
        content = input_file.decode("utf-8").strip()
        userdata = content.split('\n')
        if len(userdata) != count_lines(GT_PATH):
            return f"Error! The number of lines in the submit file ({len(userdata)}) does not match the number of lines in the AUTO-EVAL-VIDEO.json file ({count_lines(GT_PATH)}).", get_result_df()
        if not check_json(content):
            return "JSON DECODE ERROR!", get_result_df()
            
        prediction = prediction_analyse(content,questiontype)

        each_task_accuracy = {i: round(prediction[i]["correct"] / max(1, prediction[i]["total"]) * 100, 1) for i in questiontype}

        total_correct_video = sum(prediction[i]["correct"] for i in questiontype)

        total_video = sum(prediction[i]["total"] for i in questiontype)

        
        average_accuracy_video = round(total_correct_video / max(1, total_video) * 100, 1)
        

        col = csv_data.shape[0]
        new_data = [
            '[' + model_name_textbox + '](' + model_link + ')', 
            average_accuracy_video,
            each_task_accuracy[id2questiontype[1]],
            each_task_accuracy[id2questiontype[2]],
            each_task_accuracy[id2questiontype[3]],
            each_task_accuracy[id2questiontype[4]],
            each_task_accuracy[id2questiontype[5]],
            each_task_accuracy[id2questiontype[6]],
            each_task_accuracy[id2questiontype[7]],
            each_task_accuracy[id2questiontype[8]],
            each_task_accuracy[id2questiontype[9]],
            ]
        csv_data.loc[col] = new_data
        with scheduler.lock:
            csv_data = csv_data.to_csv(CSV_DIR, index=False)
            save_json(model_name_textbox, userdata)
    return str(average_accuracy_video) + "%", get_result_df()


block = gr.Blocks()


with block:
    gr.Markdown(
        LEADERBORAD_INTRODUCTION
    )
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem(" πŸ†  AutoEval-Video Benchmark", elem_id="AutoEval-Video-tab-table", id=0):
            with gr.Row():
                
                with gr.Accordion("Citation", open=False):
                    # citation_button = gr.interface.inputs.Textbox(
                    #                     value=CITATION_BUTTON_TEXT,
                    #                     label=CITATION_BUTTON_LABEL,
                    #                     interactive=False,
                    #                     show_copy_button=True,
                    #                     elem_id="citation-button",
                    #                 )
                    citation_button = gr.Textbox(
                        value=CITATION_BUTTON_TEXT,
                        label=CITATION_BUTTON_LABEL,
                        interactive=False,
                        elem_id="citation-button",
                        show_copy_button=True
                    )
                    # citation_button = gr.Textbox(
                    #     value=CITATION_BUTTON_TEXT,
                    #     label=CITATION_BUTTON_LABEL,
                    #     interactive=False,
                    #     elem_id="citation-button",
                    # ).style(show_copy_button=True)
    
            gr.Markdown(
                TABLE_INTRODUCTION
            )

            data_component = gr.components.Dataframe(
                value=get_result_df, 
                headers=COLUMN_NAMES,
                type="pandas", 
                datatype=DATA_TITILE_TYPE,
                interactive=False,
                visible=True,
                # css=style,
                )
            with gr.Row():
                data_run = gr.Button("Refresh")
                data_run.click(
                    get_result_df, outputs=data_component
                )
        
        with gr.TabItem("✨ Submit your model result here!", elem_id="AutoEval-Video-tab-table",id=1):
            with gr.Row():
                gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(
                        label="Model name"
                        )
                with gr.Column():
                    model_link = gr.Textbox(
                        label="Model Link"
                    )

            with gr.Column():

                input_file = gr.inputs.File(label = "Click to Upload a json File", file_count="single", type='binary')
                submit_button = gr.Button("Evaluate")
                overall_acc = gr.Textbox(label="Overall Acc.")
    
                submit_button.click(
                    add_new_eval,
                    inputs = [
                        input_file,
                        model_name_textbox,
                        model_link,
                    ],
                    outputs = [overall_acc, data_component],
                )
block.launch()