Spaces:
Runtime error
Runtime error
File size: 11,419 Bytes
a80de29 3a09e7a a80de29 f15e042 a80de29 6d8b074 e2de889 bd8fda7 a80de29 e2de889 a80de29 e90acd4 a80de29 e90acd4 a80de29 067f1fd a80de29 e90acd4 a80de29 7b46102 a80de29 7b46102 a80de29 e2de889 a80de29 067f1fd a80de29 e2de889 a80de29 3a09e7a a80de29 067f1fd a80de29 c205b58 a80de29 c205b58 a80de29 e2de889 a80de29 9705ae6 a80de29 248b7a5 9705ae6 a80de29 0abd578 a80de29 e2de889 a80de29 e2de889 a80de29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
MODEL_INFO = ["Model"]
AVGACC = "Overall Acc."
TASK_INFO = [AVGACC, "Dynamic Perception","State Transitions Perception","Comparison Reasoning","Reasoning with External Knowledge","Explanatory Reasoning","Predictive Reasoning","Description","Counterfactual Reasoning","Camera Movement Perception"]
DATA_TITILE_TYPE = ["markdown", "number", "number", "number", "number", "number", "number", "number", "number", "number", "number"]
CSV_DIR = "./file/result.csv"
COLUMN_NAMES = MODEL_INFO + TASK_INFO
GT_PATH = "./file/AUTO-EVAL-VIDEO.json"
JSON_DATASET_PATH = "./file/userdata.json"
LEADERBORAD_INTRODUCTION = """# AutoEval-Video Leaderboard
Welcome to the leaderboard of AutoEval-Video!
AutoEval-Video comprises 327 complex open-ended video-question instances that span across nine skill dimensions, which address video-specific perception, comprehension, and generation skills. Please refer to our [paper](https://arxiv.org/abs/2311.14906) for more details.
"""
SUBMIT_INTRODUCTION = """# Submit Introduction
1. Format your model output as a JSON file, following the example provided in our [GitHub repository](https://github.com/Xiuyuan-Chen/AutoEval-Video/blob/main/prediction_sample.json).
2. Assign a unique "model name" for your results.
3. Include the link to your model's repository with each submission.
4. After clicking "Evaluate", allow approximately one hour for your model's results to be processed. To view the most recent results in the leaderboard, click "Refresh".
"""
# SUBMIT_INTRODUCTION = """# Submit Introduction
# For example, if you want to upload GPT-4V's result in the leaderboard, you need to:
# 1. Fill in 'GPT-4V' in 'Model Name' if it is your first time to submit your result. Alternatively, if you wish to modify the outcomes of your model, please add a version suffix after the model's name like 'GPT-4V_v2'.
# 2. Upload results.json.
# 3. Click the 'Evaluate' button.
# 4. Click 'Refresh' to obtain the uploaded leaderboard.
# 5. The evaluation results of your model will be given in the "Overall Acc." box. For results specific to each evaluation dimension, please refer back to the leaderboard.
# """
TABLE_INTRODUCTION = """The table below shows the performance of various models on different evaluation dimensions on AutoEval-Video.
We use accuracy(%) as the primary evaluation metric for each dimension.
"""
CITATION_BUTTON_LABEL = "If you find AutoEval-Video useful for your research and applications, please copy the following snippet to cite these results: "
CITATION_BUTTON_TEXT = """@article{chen2023autoevalvideo,
title={AutoEval-Video: An Automatic Benchmark for Assessing Large Vision Language Models in Open-Ended Video Question Answering},
author={Xiuyuan Chen and Yuan Lin and Yuchen Zhang and Weiran Huang},
year={2023},
journal={arXiv preprint arXiv:2311.14906}
}"""
style = """<style>
.dataframe-container {
overflow-x: auto;
}
</style>"""
import gradio as gr
import pandas as pd
import json
from tqdm import tqdm
import time
import random
from huggingface_hub import CommitScheduler, login
import os
from openai import OpenAI
from tool import *
global data_component
login(token=os.environ.get("HF_TOKEN"), write_permission=True)
def get_result_df():
df = pd.read_csv(CSV_DIR)[COLUMN_NAMES]
df = df.sort_values(by=AVGACC, ascending=False)
return df
def check_json(prediction_content):
predictions = prediction_content.split("\n")
for prediction in predictions:
try:
prediction = json.loads(prediction)
except json.JSONDecodeError:
print(f"Warning: Skipping invalid JSON data in line: {prediction}")
return False
return True
def prediction_analyse(prediction_content,questiontype_list):
predictions = prediction_content.split("\n")
ground_truth_data = []
with open("./file/AUTO-EVAL-VIDEO.json", "r") as f:
for line in f :
data = json.loads(line.strip())
ground_truth_data.append(data)
id2item = {str(item["ID"]): item for item in ground_truth_data}
results = {i: {"correct": 0, "total": 0} for i in questiontype_list}
for prediction in tqdm(predictions):
# pdb.set_trace()
prediction = prediction.strip()
if not prediction:
continue
try:
prediction = json.loads(prediction)
except json.JSONDecodeError:
print(f"Warning: Skipping invalid JSON data in line: {prediction}")
continue
question_id = str(prediction["ID"])
print("Evaluating ID: " + question_id)
item_gt = id2item[question_id]
rule = item_gt['Rule']
question_type = item_gt["Dimension"]
pre_output = prediction["prediction"]
if "judge" in list(prediction.keys()):
judge_result_bit = prediction["judge"]
else:
_, judge_result_bit = alternate_judge(rule, pre_output, os.environ.get("yuan_api"))
assert judge_result_bit in ["0", "1"], "Invalid judge result bit!"
if judge_result_bit == "1":
results[question_type]["correct"] += 1
results[question_type]["total"] += 1
return results
scheduler = CommitScheduler(
repo_id="AUTOEVAL-Video-Backup",
private=True,
repo_type="dataset",
folder_path="./file",
path_in_repo="data",
every=5,
)
def save_json(modelname, user_dict_list):
with open(JSON_DATASET_PATH, "a") as f:
json.dump({modelname:user_dict_list}, f)
f.write('\n')
def add_new_eval(
input_file,
model_name_textbox: str,
model_link: str
):
if len(model_name_textbox) == 0:
return "Error! Empty model name!", get_result_df()
if len(model_link) == 0:
return "Error! Empty model link!", get_result_df()
if input_file is None:
return "Error! Empty file!", get_result_df()
else:
csv_data = pd.read_csv(CSV_DIR, dtype={'Model': str})
model_name_list = list(csv_data['Model'])
model_name_list = [name.split(']')[0][1:] for name in model_name_list]
if model_name_textbox in model_name_list:
return "In the leaderboard, there already exists a model with the same name, and duplicate submissions of it are not allowed.", get_result_df()
questiontype = COLUMN_NAMES[-9:]
id2questiontype = dict(zip(range(1, 10),questiontype))
content = input_file.decode("utf-8").strip()
userdata = content.split('\n')
if len(userdata) != count_lines(GT_PATH):
return f"Error! The number of lines in the submit file ({len(userdata)}) does not match the number of lines in the AUTO-EVAL-VIDEO.json file ({count_lines(GT_PATH)}).", get_result_df()
if not check_json(content):
return "JSON DECODE ERROR!", get_result_df()
prediction = prediction_analyse(content,questiontype)
each_task_accuracy = {i: round(prediction[i]["correct"] / max(1, prediction[i]["total"]) * 100, 1) for i in questiontype}
total_correct_video = sum(prediction[i]["correct"] for i in questiontype)
total_video = sum(prediction[i]["total"] for i in questiontype)
average_accuracy_video = round(total_correct_video / max(1, total_video) * 100, 1)
col = csv_data.shape[0]
new_data = [
'[' + model_name_textbox + '](' + model_link + ')',
average_accuracy_video,
each_task_accuracy[id2questiontype[1]],
each_task_accuracy[id2questiontype[2]],
each_task_accuracy[id2questiontype[3]],
each_task_accuracy[id2questiontype[4]],
each_task_accuracy[id2questiontype[5]],
each_task_accuracy[id2questiontype[6]],
each_task_accuracy[id2questiontype[7]],
each_task_accuracy[id2questiontype[8]],
each_task_accuracy[id2questiontype[9]],
]
csv_data.loc[col] = new_data
with scheduler.lock:
csv_data = csv_data.to_csv(CSV_DIR, index=False)
save_json(model_name_textbox, userdata)
return str(average_accuracy_video) + "%", get_result_df()
block = gr.Blocks()
with block:
gr.Markdown(
LEADERBORAD_INTRODUCTION
)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem(" π AutoEval-Video Benchmark", elem_id="AutoEval-Video-tab-table", id=0):
with gr.Row():
with gr.Accordion("Citation", open=False):
# citation_button = gr.interface.inputs.Textbox(
# value=CITATION_BUTTON_TEXT,
# label=CITATION_BUTTON_LABEL,
# interactive=False,
# show_copy_button=True,
# elem_id="citation-button",
# )
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
interactive=False,
elem_id="citation-button",
show_copy_button=True
)
# citation_button = gr.Textbox(
# value=CITATION_BUTTON_TEXT,
# label=CITATION_BUTTON_LABEL,
# interactive=False,
# elem_id="citation-button",
# ).style(show_copy_button=True)
gr.Markdown(
TABLE_INTRODUCTION
)
data_component = gr.components.Dataframe(
value=get_result_df,
headers=COLUMN_NAMES,
type="pandas",
datatype=DATA_TITILE_TYPE,
interactive=False,
visible=True,
# css=style,
)
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(
get_result_df, outputs=data_component
)
with gr.TabItem("β¨ Submit your model result here!", elem_id="AutoEval-Video-tab-table",id=1):
with gr.Row():
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(
label="Model name"
)
with gr.Column():
model_link = gr.Textbox(
label="Model Link"
)
with gr.Column():
input_file = gr.inputs.File(label = "Click to Upload a json File", file_count="single", type='binary')
submit_button = gr.Button("Evaluate")
overall_acc = gr.Textbox(label="Overall Acc.")
submit_button.click(
add_new_eval,
inputs = [
input_file,
model_name_textbox,
model_link,
],
outputs = [overall_acc, data_component],
)
block.launch() |