Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -82,7 +82,6 @@ def prediction_analyse(prediction_content,questiontype_list):
|
|
82 |
print(f"Warning: Skipping invalid JSON data in line: {prediction}")
|
83 |
continue
|
84 |
question_id = str(prediction["ID"])
|
85 |
-
print(question_id)
|
86 |
item_gt = id2item[question_id]
|
87 |
rule = item_gt['Rule']
|
88 |
question_type = item_gt["Dimension"]
|
@@ -97,7 +96,7 @@ def prediction_analyse(prediction_content,questiontype_list):
|
|
97 |
results[question_type]["correct"] += 1
|
98 |
|
99 |
results[question_type]["total"] += 1
|
100 |
-
|
101 |
return results
|
102 |
|
103 |
|
@@ -140,14 +139,14 @@ def add_new_eval(
|
|
140 |
|
141 |
prediction = prediction_analyse(content,questiontype)
|
142 |
|
143 |
-
each_task_accuracy = {i: round(prediction[i]["correct"] / prediction[i]["total"] * 100, 1) for i in questiontype}
|
144 |
|
145 |
total_correct_video = sum(prediction[i]["correct"] for i in questiontype)
|
146 |
|
147 |
total_video = sum(prediction[i]["total"] for i in questiontype)
|
148 |
|
149 |
|
150 |
-
average_accuracy_video = round(total_correct_video / total_video * 100, 1)
|
151 |
|
152 |
|
153 |
col = csv_data.shape[0]
|
|
|
82 |
print(f"Warning: Skipping invalid JSON data in line: {prediction}")
|
83 |
continue
|
84 |
question_id = str(prediction["ID"])
|
|
|
85 |
item_gt = id2item[question_id]
|
86 |
rule = item_gt['Rule']
|
87 |
question_type = item_gt["Dimension"]
|
|
|
96 |
results[question_type]["correct"] += 1
|
97 |
|
98 |
results[question_type]["total"] += 1
|
99 |
+
break
|
100 |
return results
|
101 |
|
102 |
|
|
|
139 |
|
140 |
prediction = prediction_analyse(content,questiontype)
|
141 |
|
142 |
+
each_task_accuracy = {i: round(prediction[i]["correct"] / max(1, prediction[i]["total"]) * 100, 1) for i in questiontype}
|
143 |
|
144 |
total_correct_video = sum(prediction[i]["correct"] for i in questiontype)
|
145 |
|
146 |
total_video = sum(prediction[i]["total"] for i in questiontype)
|
147 |
|
148 |
|
149 |
+
average_accuracy_video = round(total_correct_video / max(1, total_video) * 100, 1)
|
150 |
|
151 |
|
152 |
col = csv_data.shape[0]
|