File size: 17,797 Bytes
0ea2c0e
35a9ed4
0ea2c0e
35a9ed4
0ea2c0e
 
 
 
 
 
 
 
8d20c43
45d0b80
 
 
 
 
 
 
 
0ea2c0e
 
 
 
 
 
b29876f
0ea2c0e
96bcebe
0ea2c0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45d0b80
0ea2c0e
8d20c43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45d0b80
 
8d20c43
0ea2c0e
45d0b80
0ea2c0e
 
45d0b80
 
 
 
42bde0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45d0b80
42bde0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ea2c0e
45d0b80
dcd69bb
0ea2c0e
bdee200
19540cf
45d0b80
8d20c43
5bdf407
45d0b80
ba17d2e
6bde22d
45d0b80
 
 
 
42bde0f
 
 
45d0b80
0ea2c0e
45d0b80
 
5672cc2
45d0b80
 
42bde0f
ba17d2e
 
45d0b80
 
 
 
5672cc2
6d8fee1
6851a9a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteria
import gradio as gr
import spaces
import torch
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
from PIL import Image, ExifTags
import cv2
import numpy as np
import torch
from html2image import Html2Image
import tempfile
import os
import uuid
from scipy.ndimage import gaussian_filter
from threading import Thread
import re
import time 
from PIL import Image
import torch
import spaces
import subprocess
import os
from moviepy.editor import VideoFileClip, AudioFileClip

subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

torch.set_default_device('cuda')


IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images, target_aspect_ratio

def correct_image_orientation(image_path):
    # Mở ảnh
    image = Image.open(image_path)

    # Kiểm tra dữ liệu Exif (nếu có)
    try:
        exif = image._getexif()
        if exif is not None:
            for tag, value in exif.items():
                if ExifTags.TAGS.get(tag) == "Orientation":
                    # Sửa hướng dựa trên Orientation
                    if value == 3:
                        image = image.rotate(180, expand=True)
                    elif value == 6:
                        image = image.rotate(-90, expand=True)
                    elif value == 8:
                        image = image.rotate(90, expand=True)
                    break
    except Exception as e:
        print("Không thể xử lý Exif:", e)

    return image

def load_image(image_file, input_size=448, max_num=12, target_aspect_ratio=False):
    image = correct_image_orientation(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images, target_aspect_ratio = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    if target_aspect_ratio:
        return pixel_values, target_aspect_ratio
    else:
        return pixel_values

def visualize_attention_hiddenstate(attention_tensor, head=None, start_img_token_index=0, end_img_token_index=0, target_aspect_ratio=(0,0)):
    """Vẽ heatmap của attention scores từ trung bình 8 layer cuối và trả về top 5 token có attention cao nhất."""
    last_8_layers = attention_tensor[-8:]  # Lấy 8 layer cuối
    averaged_layer = np.mean(last_8_layers,axis=0)  # Trung bình 8 layer cuối
    
    if head is None:
        averaged_attention = averaged_layer.mean(axis=1).squeeze()  # Trung bình qua các head
    else:
        averaged_attention = averaged_layer[:, head, :, :].squeeze()  # Chọn head cụ thể

    heat_maps = []
    top_5_tokens = []
    
    for i in range(len(averaged_attention)):  # Duyệt qua các beam
        h_target_aspect_ratio = target_aspect_ratio[1] if target_aspect_ratio[1] != 0 else 1
        w_target_aspect_ratio = target_aspect_ratio[0] if target_aspect_ratio[0] != 0 else 1

        img_atten_score = averaged_attention[i].reshape(-1)[start_img_token_index:end_img_token_index]
        
        # Lấy index của 5 token có attention cao nhất
        top_5_indices = np.argsort(img_atten_score)[-5:][::-1]  # Sắp xếp giảm dần
        top_5_values = img_atten_score[top_5_indices]
        # top_5_tokens.append(list(zip(top_5_indices + start_img_token_index, top_5_values)))
        top_5_tokens.append(list(top_5_indices + start_img_token_index))
        
        
        # Reshape lại attention để vẽ heatmap
        img_atten_score = img_atten_score.reshape(h_target_aspect_ratio, w_target_aspect_ratio, 16, 16)
        img_atten_score = np.transpose(img_atten_score, (0, 2, 1, 3)).reshape(h_target_aspect_ratio * 16, w_target_aspect_ratio * 16)

        img_atten_score = np.power(img_atten_score, 0.9)
        heat_maps.append(img_atten_score)
    
    return heat_maps, top_5_tokens

def generate_next_token_table_image(model, tokenizer, response, index_focus):
    next_token_table = []
    for layer_index in range(len(response.hidden_states[index_focus])):
        h_out = model.language_model.lm_head(
            model.language_model.model.norm(response.hidden_states[index_focus][layer_index][0])
        )
        h_out = torch.softmax(h_out, -1)
        top_tokens = []
        for token_index in h_out.argsort(descending=True)[0, :3]:  # Top 3
            token_str = tokenizer.decode(token_index)
            prob = float(h_out[0, int(token_index)])
            top_tokens.append((token_str, prob))
        next_token_table.append((layer_index, top_tokens))
    next_token_table = next_token_table[::-1]
    
    html_rows = ""
    last_layer_index = len(next_token_table) - 1
    
    for i, (layer_index, tokens) in enumerate(next_token_table):
        row = f"<tr><td style='font-weight: bold'>Layer {layer_index}</td>"
        
        # For the first column (Top 1)
        token_str, prob = tokens[0]
        
        # If this is the last layer in the table, make the text blue
        if layer_index == last_layer_index:
            row += f"<td><span style='color: red; font-weight: bold'>{token_str}</span> ({prob:.2%})</td>"
        else:
            row += f"<td><span style='color: blue; font-weight: bold'>{token_str}</span> ({prob:.2%})</td>"
        
        # For the other columns, keep normal formatting
        for token_str, prob in tokens[1:]:
            row += f"<td>{token_str} ({prob:.2%})</td>"
            
        row += "</tr>"
        html_rows += row
        
    html_code = f'''
    <html>
      <head>
        <meta charset="utf-8">
        <style>
          table {{
            font-family: 'Noto Sans';
            font-size: 12px;
            border-collapse: collapse;
            table-layout: fixed;
            width: 100%;
          }}
          th, td {{
            border: 1px solid black;
            padding: 8px;
            width: 150px;
            height: 30px;
            overflow: hidden;
            text-overflow: ellipsis;
            white-space: nowrap;
            text-align: center;
          }}
          th.layer {{
            width: 100px;
          }}
          th.title {{
            font-size: 14px;
            padding: 10px;
            height: auto;
            white-space: normal;
            overflow: visible;
          }}
        </style>
      </head>
      <body style="background-color: white;">
        <table>
          <tr>
            <th colspan="4" class="title">
              Top hidden tokens per layer for the Prediction
            </th>
          </tr>
          <tr>
            <th class="layer">Layer ⬆️</th>
            <th>Top 1</th>
            <th>Top 2</th>
            <th>Top 3</th>
          </tr>
          {html_rows}
        </table>
      </body>
    </html>
    '''


    with tempfile.TemporaryDirectory() as tmpdir:
        hti = Html2Image(output_path=tmpdir)
        hti.browser_flags = [
    "--headless=new",      # ← Dùng chế độ headless mới
    "--disable-gpu",       # ← Tắt GPU
    "--disable-software-rasterizer",  # ← Tránh dùng fallback GPU software
    "--no-sandbox",        # ← Tránh lỗi sandbox đa luồng
]
        filename = str(uuid.uuid4())+".png"
        # filename = 'next_token_table.png'
        hti.screenshot(html_str=html_code, save_as=filename, size=(500, 1000))
        img_path = os.path.join(tmpdir, filename)
        img_cv2 = cv2.imread(img_path)[:,:,::-1]
        os.remove(img_path)
    return img_cv2

def adjust_overlay(overlay, text_img):
    h_o, w_o = overlay.shape[:2]
    h_t, w_t = text_img.shape[:2]

    if h_o > w_o:  # Overlay là ảnh đứng
        # Resize overlay sao cho h = h_t, giữ nguyên tỷ lệ
        new_h = h_t
        new_w = int(w_o * (new_h / h_o))
        overlay_resized = cv2.resize(overlay, (new_w, new_h))
    else:  # Overlay là ảnh ngang
        # Giữ nguyên overlay, nhưng nếu h < h_t thì thêm padding trắng
        overlay_resized = overlay.copy()

    # Thêm padding trắng nếu overlay có h < h_t
    if overlay_resized.shape[0] < h_t:
        pad_h = h_t - overlay_resized.shape[0]
        padding = np.ones((pad_h, overlay_resized.shape[1], 3), dtype=np.uint8) * 255
        overlay_resized = np.vstack((overlay_resized, padding))  # Padding vào dưới

    # Đảm bảo overlay có cùng chiều cao với text_img
    if overlay_resized.shape[0] != h_t:
        overlay_resized = cv2.resize(overlay_resized, (overlay_resized.shape[1], h_t))

    return overlay_resized

def generate_text_image_with_html2image(old_text, input_token, new_token, image_width=400, min_height=1000, font_size=16):
    full_text = old_text + f"<span style='color:blue; font-weight:bold'>[{input_token}]</span>"+ "→" + f"<span style='color:red; font-weight:bold'>[{new_token}]</span>"

    # Thay \n bằng thẻ HTML <br> để xuống dòng
    full_text = full_text.replace('\n', '<br>')

    html_code = f'''
    <html>
    <head>
        <meta charset="utf-8">
    </head>
    <body style="font-family: 'DejaVu Sans', sans-serif; font-size: {font_size}px; width: {image_width}px; min-height: {min_height}px; padding: 10px; background-color: white; line-height: 1.4;">
        {full_text}
    </body>
    </html>
    '''
    save_path = str(uuid.uuid4())+".png"
    hti = Html2Image(output_path='.')
    hti.browser_flags = [
    "--headless=new",      # ← Dùng chế độ headless mới
    "--disable-gpu",       # ← Tắt GPU
    "--disable-software-rasterizer",  # ← Tránh dùng fallback GPU software
    "--no-sandbox",        # ← Tránh lỗi sandbox đa luồng
]
    hti.screenshot(html_str=html_code, save_as=save_path, size=(image_width, min_height))
    text_img = cv2.imread(save_path)
    text_img = cv2.cvtColor(text_img, cv2.COLOR_BGR2RGB)
    os.remove(save_path)
    return text_img

def extract_next_token_table_data(model, tokenizer, response, index_focus):
    next_token_table = []
    for layer_index in range(len(response.hidden_states[index_focus])):
        h_out = model.language_model.lm_head(
            model.language_model.model.norm(response.hidden_states[index_focus][layer_index][0])
        )
        h_out = torch.softmax(h_out, -1)
        top_tokens = []
        for token_index in h_out.argsort(descending=True)[0, :3]:  # Top 3
            token_str = tokenizer.decode(token_index)
            prob = float(h_out[0, int(token_index)])
            top_tokens.append((token_str, prob))
        next_token_table.append((layer_index, top_tokens))
    next_token_table = next_token_table[::-1]
    return next_token_table

def render_next_token_table_image(table_data, predict_token):
    import tempfile, uuid, os
    from html2image import Html2Image
    import cv2

    html_rows = ""
    last_layer_index = len(table_data)
    for layer_index, tokens in table_data:
        row = f"<tr><td style='font-weight: bold'>Layer {layer_index+1}</td>"

        token_str, prob = tokens[0]
        if token_str == predict_token:
            style = "color: red; font-weight: bold"
        else:
            style = "color: blue; font-weight: bold"
        row += f"<td><span style='{style}'>{token_str}</span> ({prob:.2%})</td>"

        for token_str, prob in tokens[1:]:
            row += f"<td>{token_str} ({prob:.2%})</td>"

        row += "</tr>"
        html_rows += row

    html_code = f'''
    <html>
      <head>
        <meta charset="utf-8">
        <style>
          table {{
            font-family: 'Noto Sans';
            font-size: 12px;
            border-collapse: collapse;
            table-layout: fixed;
            width: 100%;
          }}
          th, td {{
            border: 1px solid black;
            padding: 8px;
            width: 150px;
            height: 30px;
            overflow: hidden;
            text-overflow: ellipsis;
            white-space: nowrap;
            text-align: center;
          }}
          th.layer {{
            width: 100px;
          }}
          th.title {{
            font-size: 14px;
            padding: 10px;
            height: auto;
            white-space: normal;
            overflow: visible;
          }}
        </style>
      </head>
      <body style="background-color: white;">
        <table>
          <tr>
            <th colspan="4" class="title">
              Hidden states per Transformer layer (LLM) for Prediction
            </th>
          </tr>
          <tr>
            <th class="layer">Layer ⬆️</th>
            <th>Top 1</th>
            <th>Top 2</th>
            <th>Top 3</th>
          </tr>
          {html_rows}
        </table>
      </body>
    </html>
    '''

    with tempfile.TemporaryDirectory() as tmpdir:
        hti = Html2Image(output_path=tmpdir)
        hti.browser_flags = [
            "--headless=new",
            "--disable-gpu",
            "--disable-software-rasterizer",
            "--no-sandbox",
        ]
        filename = str(uuid.uuid4()) + ".png"
        hti.screenshot(html_str=html_code, save_as=filename, size=(500, 1000))
        img_path = os.path.join(tmpdir, filename)
        img_cv2 = cv2.imread(img_path)[:, :, ::-1]
        os.remove(img_path)
    return img_cv2


model = AutoModel.from_pretrained(
    "khang119966/Vintern-1B-v3_5-explainableAI",
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True,
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained("khang119966/Vintern-1B-v3_5-explainableAI", trust_remote_code=True, use_fast=False)
    
@spaces.GPU
def generate_video(image, prompt, max_tokens):
    print(image)
    pixel_values, target_aspect_ratio = load_image(image, max_num=6).to(torch.bfloat16).cuda()
    generation_config = dict(max_new_tokens= int(max_tokens), do_sample=False, num_beams = 3, repetition_penalty=2.5)
    response, query = model.chat(tokenizer, pixel_values, '<image>\n'+prompt, generation_config, return_history=False, \
                            attention_visualize=True,last_visualize_layers=7,raw_image_path=test_image,target_aspect_ratio=target_aspect_ratio)
    print(response)
    generation_output = response
    raw_image_path = image

    return "path_to_generated_video.mp4"

with gr.Blocks() as demo:
    gr.Markdown("### Simple VLM Demo")
    
    with gr.Row():
        with gr.Column():
            image = gr.Image(label="Upload your image", type = 'filepath')
            prompt = gr.Textbox(label="Describe your prompt", value="List all the text." )
            max_tokens = gr.Slider(label="Max token output (⚠️ Choose <100 for faster response)", minimum=1, maximum=512, value=50)
            btn = gr.Button("Attenion Video")
        video = gr.Video(label="Attenion Video")

    btn.click(fn=generate_video, inputs=[image, prompt, max_tokens], outputs=video)
    
if __name__ == "__main__":
    demo.launch()