Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -133,7 +133,312 @@ def load_image(image_file, input_size=448, max_num=12, target_aspect_ratio=False
|
|
133 |
return pixel_values, target_aspect_ratio
|
134 |
else:
|
135 |
return pixel_values
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
model = AutoModel.from_pretrained(
|
138 |
"khang119966/Vintern-1B-v3_5-explainableAI",
|
139 |
torch_dtype=torch.bfloat16,
|
@@ -150,6 +455,9 @@ def generate_video(image, prompt, max_tokens):
|
|
150 |
response, query = model.chat(tokenizer, pixel_values, '<image>\n'+prompt, generation_config, return_history=False, \
|
151 |
attention_visualize=True,last_visualize_layers=7,raw_image_path=test_image,target_aspect_ratio=target_aspect_ratio)
|
152 |
print(response)
|
|
|
|
|
|
|
153 |
return "path_to_generated_video.mp4"
|
154 |
|
155 |
with gr.Blocks() as demo:
|
@@ -157,7 +465,7 @@ with gr.Blocks() as demo:
|
|
157 |
|
158 |
with gr.Row():
|
159 |
with gr.Column():
|
160 |
-
image = gr.Image(label="Upload your image")
|
161 |
prompt = gr.Textbox(label="Describe your prompt", value="List all the text." )
|
162 |
max_tokens = gr.Slider(label="Max token output (⚠️ Choose <100 for faster response)", minimum=1, maximum=512, value=50)
|
163 |
btn = gr.Button("Attenion Video")
|
|
|
133 |
return pixel_values, target_aspect_ratio
|
134 |
else:
|
135 |
return pixel_values
|
136 |
+
|
137 |
+
def visualize_attention_hiddenstate(attention_tensor, head=None, start_img_token_index=0, end_img_token_index=0, target_aspect_ratio=(0,0)):
|
138 |
+
"""Vẽ heatmap của attention scores từ trung bình 8 layer cuối và trả về top 5 token có attention cao nhất."""
|
139 |
+
last_8_layers = attention_tensor[-8:] # Lấy 8 layer cuối
|
140 |
+
averaged_layer = np.mean(last_8_layers,axis=0) # Trung bình 8 layer cuối
|
141 |
+
|
142 |
+
if head is None:
|
143 |
+
averaged_attention = averaged_layer.mean(axis=1).squeeze() # Trung bình qua các head
|
144 |
+
else:
|
145 |
+
averaged_attention = averaged_layer[:, head, :, :].squeeze() # Chọn head cụ thể
|
146 |
+
|
147 |
+
heat_maps = []
|
148 |
+
top_5_tokens = []
|
149 |
+
|
150 |
+
for i in range(len(averaged_attention)): # Duyệt qua các beam
|
151 |
+
h_target_aspect_ratio = target_aspect_ratio[1] if target_aspect_ratio[1] != 0 else 1
|
152 |
+
w_target_aspect_ratio = target_aspect_ratio[0] if target_aspect_ratio[0] != 0 else 1
|
153 |
+
|
154 |
+
img_atten_score = averaged_attention[i].reshape(-1)[start_img_token_index:end_img_token_index]
|
155 |
+
|
156 |
+
# Lấy index của 5 token có attention cao nhất
|
157 |
+
top_5_indices = np.argsort(img_atten_score)[-5:][::-1] # Sắp xếp giảm dần
|
158 |
+
top_5_values = img_atten_score[top_5_indices]
|
159 |
+
# top_5_tokens.append(list(zip(top_5_indices + start_img_token_index, top_5_values)))
|
160 |
+
top_5_tokens.append(list(top_5_indices + start_img_token_index))
|
161 |
+
|
162 |
+
|
163 |
+
# Reshape lại attention để vẽ heatmap
|
164 |
+
img_atten_score = img_atten_score.reshape(h_target_aspect_ratio, w_target_aspect_ratio, 16, 16)
|
165 |
+
img_atten_score = np.transpose(img_atten_score, (0, 2, 1, 3)).reshape(h_target_aspect_ratio * 16, w_target_aspect_ratio * 16)
|
166 |
+
|
167 |
+
img_atten_score = np.power(img_atten_score, 0.9)
|
168 |
+
heat_maps.append(img_atten_score)
|
169 |
+
|
170 |
+
return heat_maps, top_5_tokens
|
171 |
+
|
172 |
+
def generate_next_token_table_image(model, tokenizer, response, index_focus):
|
173 |
+
next_token_table = []
|
174 |
+
for layer_index in range(len(response.hidden_states[index_focus])):
|
175 |
+
h_out = model.language_model.lm_head(
|
176 |
+
model.language_model.model.norm(response.hidden_states[index_focus][layer_index][0])
|
177 |
+
)
|
178 |
+
h_out = torch.softmax(h_out, -1)
|
179 |
+
top_tokens = []
|
180 |
+
for token_index in h_out.argsort(descending=True)[0, :3]: # Top 3
|
181 |
+
token_str = tokenizer.decode(token_index)
|
182 |
+
prob = float(h_out[0, int(token_index)])
|
183 |
+
top_tokens.append((token_str, prob))
|
184 |
+
next_token_table.append((layer_index, top_tokens))
|
185 |
+
next_token_table = next_token_table[::-1]
|
186 |
+
|
187 |
+
html_rows = ""
|
188 |
+
last_layer_index = len(next_token_table) - 1
|
189 |
+
|
190 |
+
for i, (layer_index, tokens) in enumerate(next_token_table):
|
191 |
+
row = f"<tr><td style='font-weight: bold'>Layer {layer_index}</td>"
|
192 |
|
193 |
+
# For the first column (Top 1)
|
194 |
+
token_str, prob = tokens[0]
|
195 |
+
|
196 |
+
# If this is the last layer in the table, make the text blue
|
197 |
+
if layer_index == last_layer_index:
|
198 |
+
row += f"<td><span style='color: red; font-weight: bold'>{token_str}</span> ({prob:.2%})</td>"
|
199 |
+
else:
|
200 |
+
row += f"<td><span style='color: blue; font-weight: bold'>{token_str}</span> ({prob:.2%})</td>"
|
201 |
+
|
202 |
+
# For the other columns, keep normal formatting
|
203 |
+
for token_str, prob in tokens[1:]:
|
204 |
+
row += f"<td>{token_str} ({prob:.2%})</td>"
|
205 |
+
|
206 |
+
row += "</tr>"
|
207 |
+
html_rows += row
|
208 |
+
|
209 |
+
html_code = f'''
|
210 |
+
<html>
|
211 |
+
<head>
|
212 |
+
<meta charset="utf-8">
|
213 |
+
<style>
|
214 |
+
table {{
|
215 |
+
font-family: 'Noto Sans';
|
216 |
+
font-size: 12px;
|
217 |
+
border-collapse: collapse;
|
218 |
+
table-layout: fixed;
|
219 |
+
width: 100%;
|
220 |
+
}}
|
221 |
+
th, td {{
|
222 |
+
border: 1px solid black;
|
223 |
+
padding: 8px;
|
224 |
+
width: 150px;
|
225 |
+
height: 30px;
|
226 |
+
overflow: hidden;
|
227 |
+
text-overflow: ellipsis;
|
228 |
+
white-space: nowrap;
|
229 |
+
text-align: center;
|
230 |
+
}}
|
231 |
+
th.layer {{
|
232 |
+
width: 100px;
|
233 |
+
}}
|
234 |
+
th.title {{
|
235 |
+
font-size: 14px;
|
236 |
+
padding: 10px;
|
237 |
+
height: auto;
|
238 |
+
white-space: normal;
|
239 |
+
overflow: visible;
|
240 |
+
}}
|
241 |
+
</style>
|
242 |
+
</head>
|
243 |
+
<body style="background-color: white;">
|
244 |
+
<table>
|
245 |
+
<tr>
|
246 |
+
<th colspan="4" class="title">
|
247 |
+
Top hidden tokens per layer for the Prediction
|
248 |
+
</th>
|
249 |
+
</tr>
|
250 |
+
<tr>
|
251 |
+
<th class="layer">Layer ⬆️</th>
|
252 |
+
<th>Top 1</th>
|
253 |
+
<th>Top 2</th>
|
254 |
+
<th>Top 3</th>
|
255 |
+
</tr>
|
256 |
+
{html_rows}
|
257 |
+
</table>
|
258 |
+
</body>
|
259 |
+
</html>
|
260 |
+
'''
|
261 |
+
|
262 |
+
|
263 |
+
with tempfile.TemporaryDirectory() as tmpdir:
|
264 |
+
hti = Html2Image(output_path=tmpdir)
|
265 |
+
hti.browser_flags = [
|
266 |
+
"--headless=new", # ← Dùng chế độ headless mới
|
267 |
+
"--disable-gpu", # ← Tắt GPU
|
268 |
+
"--disable-software-rasterizer", # ← Tránh dùng fallback GPU software
|
269 |
+
"--no-sandbox", # ← Tránh lỗi sandbox đa luồng
|
270 |
+
]
|
271 |
+
filename = str(uuid.uuid4())+".png"
|
272 |
+
# filename = 'next_token_table.png'
|
273 |
+
hti.screenshot(html_str=html_code, save_as=filename, size=(500, 1000))
|
274 |
+
img_path = os.path.join(tmpdir, filename)
|
275 |
+
img_cv2 = cv2.imread(img_path)[:,:,::-1]
|
276 |
+
os.remove(img_path)
|
277 |
+
return img_cv2
|
278 |
+
|
279 |
+
def adjust_overlay(overlay, text_img):
|
280 |
+
h_o, w_o = overlay.shape[:2]
|
281 |
+
h_t, w_t = text_img.shape[:2]
|
282 |
+
|
283 |
+
if h_o > w_o: # Overlay là ảnh đứng
|
284 |
+
# Resize overlay sao cho h = h_t, giữ nguyên tỷ lệ
|
285 |
+
new_h = h_t
|
286 |
+
new_w = int(w_o * (new_h / h_o))
|
287 |
+
overlay_resized = cv2.resize(overlay, (new_w, new_h))
|
288 |
+
else: # Overlay là ảnh ngang
|
289 |
+
# Giữ nguyên overlay, nhưng nếu h < h_t thì thêm padding trắng
|
290 |
+
overlay_resized = overlay.copy()
|
291 |
+
|
292 |
+
# Thêm padding trắng nếu overlay có h < h_t
|
293 |
+
if overlay_resized.shape[0] < h_t:
|
294 |
+
pad_h = h_t - overlay_resized.shape[0]
|
295 |
+
padding = np.ones((pad_h, overlay_resized.shape[1], 3), dtype=np.uint8) * 255
|
296 |
+
overlay_resized = np.vstack((overlay_resized, padding)) # Padding vào dưới
|
297 |
+
|
298 |
+
# Đảm bảo overlay có cùng chiều cao với text_img
|
299 |
+
if overlay_resized.shape[0] != h_t:
|
300 |
+
overlay_resized = cv2.resize(overlay_resized, (overlay_resized.shape[1], h_t))
|
301 |
+
|
302 |
+
return overlay_resized
|
303 |
+
|
304 |
+
def generate_text_image_with_html2image(old_text, input_token, new_token, image_width=400, min_height=1000, font_size=16):
|
305 |
+
full_text = old_text + f"<span style='color:blue; font-weight:bold'>[{input_token}]</span>"+ "→" + f"<span style='color:red; font-weight:bold'>[{new_token}]</span>"
|
306 |
+
|
307 |
+
# Thay \n bằng thẻ HTML <br> để xuống dòng
|
308 |
+
full_text = full_text.replace('\n', '<br>')
|
309 |
+
|
310 |
+
html_code = f'''
|
311 |
+
<html>
|
312 |
+
<head>
|
313 |
+
<meta charset="utf-8">
|
314 |
+
</head>
|
315 |
+
<body style="font-family: 'DejaVu Sans', sans-serif; font-size: {font_size}px; width: {image_width}px; min-height: {min_height}px; padding: 10px; background-color: white; line-height: 1.4;">
|
316 |
+
{full_text}
|
317 |
+
</body>
|
318 |
+
</html>
|
319 |
+
'''
|
320 |
+
save_path = str(uuid.uuid4())+".png"
|
321 |
+
hti = Html2Image(output_path='.')
|
322 |
+
hti.browser_flags = [
|
323 |
+
"--headless=new", # ← Dùng chế độ headless mới
|
324 |
+
"--disable-gpu", # ← Tắt GPU
|
325 |
+
"--disable-software-rasterizer", # ← Tránh dùng fallback GPU software
|
326 |
+
"--no-sandbox", # ← Tránh lỗi sandbox đa luồng
|
327 |
+
]
|
328 |
+
hti.screenshot(html_str=html_code, save_as=save_path, size=(image_width, min_height))
|
329 |
+
text_img = cv2.imread(save_path)
|
330 |
+
text_img = cv2.cvtColor(text_img, cv2.COLOR_BGR2RGB)
|
331 |
+
os.remove(save_path)
|
332 |
+
return text_img
|
333 |
+
|
334 |
+
def extract_next_token_table_data(model, tokenizer, response, index_focus):
|
335 |
+
next_token_table = []
|
336 |
+
for layer_index in range(len(response.hidden_states[index_focus])):
|
337 |
+
h_out = model.language_model.lm_head(
|
338 |
+
model.language_model.model.norm(response.hidden_states[index_focus][layer_index][0])
|
339 |
+
)
|
340 |
+
h_out = torch.softmax(h_out, -1)
|
341 |
+
top_tokens = []
|
342 |
+
for token_index in h_out.argsort(descending=True)[0, :3]: # Top 3
|
343 |
+
token_str = tokenizer.decode(token_index)
|
344 |
+
prob = float(h_out[0, int(token_index)])
|
345 |
+
top_tokens.append((token_str, prob))
|
346 |
+
next_token_table.append((layer_index, top_tokens))
|
347 |
+
next_token_table = next_token_table[::-1]
|
348 |
+
return next_token_table
|
349 |
+
|
350 |
+
def render_next_token_table_image(table_data, predict_token):
|
351 |
+
import tempfile, uuid, os
|
352 |
+
from html2image import Html2Image
|
353 |
+
import cv2
|
354 |
+
|
355 |
+
html_rows = ""
|
356 |
+
last_layer_index = len(table_data)
|
357 |
+
for layer_index, tokens in table_data:
|
358 |
+
row = f"<tr><td style='font-weight: bold'>Layer {layer_index+1}</td>"
|
359 |
+
|
360 |
+
token_str, prob = tokens[0]
|
361 |
+
if token_str == predict_token:
|
362 |
+
style = "color: red; font-weight: bold"
|
363 |
+
else:
|
364 |
+
style = "color: blue; font-weight: bold"
|
365 |
+
row += f"<td><span style='{style}'>{token_str}</span> ({prob:.2%})</td>"
|
366 |
+
|
367 |
+
for token_str, prob in tokens[1:]:
|
368 |
+
row += f"<td>{token_str} ({prob:.2%})</td>"
|
369 |
+
|
370 |
+
row += "</tr>"
|
371 |
+
html_rows += row
|
372 |
+
|
373 |
+
html_code = f'''
|
374 |
+
<html>
|
375 |
+
<head>
|
376 |
+
<meta charset="utf-8">
|
377 |
+
<style>
|
378 |
+
table {{
|
379 |
+
font-family: 'Noto Sans';
|
380 |
+
font-size: 12px;
|
381 |
+
border-collapse: collapse;
|
382 |
+
table-layout: fixed;
|
383 |
+
width: 100%;
|
384 |
+
}}
|
385 |
+
th, td {{
|
386 |
+
border: 1px solid black;
|
387 |
+
padding: 8px;
|
388 |
+
width: 150px;
|
389 |
+
height: 30px;
|
390 |
+
overflow: hidden;
|
391 |
+
text-overflow: ellipsis;
|
392 |
+
white-space: nowrap;
|
393 |
+
text-align: center;
|
394 |
+
}}
|
395 |
+
th.layer {{
|
396 |
+
width: 100px;
|
397 |
+
}}
|
398 |
+
th.title {{
|
399 |
+
font-size: 14px;
|
400 |
+
padding: 10px;
|
401 |
+
height: auto;
|
402 |
+
white-space: normal;
|
403 |
+
overflow: visible;
|
404 |
+
}}
|
405 |
+
</style>
|
406 |
+
</head>
|
407 |
+
<body style="background-color: white;">
|
408 |
+
<table>
|
409 |
+
<tr>
|
410 |
+
<th colspan="4" class="title">
|
411 |
+
Hidden states per Transformer layer (LLM) for Prediction
|
412 |
+
</th>
|
413 |
+
</tr>
|
414 |
+
<tr>
|
415 |
+
<th class="layer">Layer ⬆️</th>
|
416 |
+
<th>Top 1</th>
|
417 |
+
<th>Top 2</th>
|
418 |
+
<th>Top 3</th>
|
419 |
+
</tr>
|
420 |
+
{html_rows}
|
421 |
+
</table>
|
422 |
+
</body>
|
423 |
+
</html>
|
424 |
+
'''
|
425 |
+
|
426 |
+
with tempfile.TemporaryDirectory() as tmpdir:
|
427 |
+
hti = Html2Image(output_path=tmpdir)
|
428 |
+
hti.browser_flags = [
|
429 |
+
"--headless=new",
|
430 |
+
"--disable-gpu",
|
431 |
+
"--disable-software-rasterizer",
|
432 |
+
"--no-sandbox",
|
433 |
+
]
|
434 |
+
filename = str(uuid.uuid4()) + ".png"
|
435 |
+
hti.screenshot(html_str=html_code, save_as=filename, size=(500, 1000))
|
436 |
+
img_path = os.path.join(tmpdir, filename)
|
437 |
+
img_cv2 = cv2.imread(img_path)[:, :, ::-1]
|
438 |
+
os.remove(img_path)
|
439 |
+
return img_cv2
|
440 |
+
|
441 |
+
|
442 |
model = AutoModel.from_pretrained(
|
443 |
"khang119966/Vintern-1B-v3_5-explainableAI",
|
444 |
torch_dtype=torch.bfloat16,
|
|
|
455 |
response, query = model.chat(tokenizer, pixel_values, '<image>\n'+prompt, generation_config, return_history=False, \
|
456 |
attention_visualize=True,last_visualize_layers=7,raw_image_path=test_image,target_aspect_ratio=target_aspect_ratio)
|
457 |
print(response)
|
458 |
+
generation_output = response
|
459 |
+
raw_image_path = image
|
460 |
+
|
461 |
return "path_to_generated_video.mp4"
|
462 |
|
463 |
with gr.Blocks() as demo:
|
|
|
465 |
|
466 |
with gr.Row():
|
467 |
with gr.Column():
|
468 |
+
image = gr.Image(label="Upload your image", type = 'filepath')
|
469 |
prompt = gr.Textbox(label="Describe your prompt", value="List all the text." )
|
470 |
max_tokens = gr.Slider(label="Max token output (⚠️ Choose <100 for faster response)", minimum=1, maximum=512, value=50)
|
471 |
btn = gr.Button("Attenion Video")
|