Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,321 Bytes
0ea2c0e 35a9ed4 0ea2c0e 35a9ed4 0ea2c0e 8d20c43 45d0b80 0ea2c0e b29876f 0ea2c0e 96bcebe 1a04091 20fac9c a623f18 0ea2c0e 888d672 b635797 888d672 1c43489 888d672 32c2424 888d672 1c43489 888d672 1c43489 888d672 3538373 888d672 f9a358f 888d672 1c43489 888d672 f9a358f 0ea2c0e 45d0b80 0ea2c0e 8d20c43 45d0b80 8d20c43 0ea2c0e 45d0b80 0ea2c0e 45d0b80 42bde0f c3d33a4 42bde0f c3d33a4 42bde0f c3d33a4 42bde0f c3d33a4 42bde0f c3d33a4 42bde0f 23191fb 42bde0f 23191fb 42bde0f 23191fb 42bde0f 23191fb 42bde0f 23191fb 42bde0f 0ea2c0e 45d0b80 dcd69bb 0ea2c0e bdee200 3d50453 19540cf 45d0b80 1a04091 888d672 1a04091 02b6361 45d0b80 ba17d2e f727381 45d0b80 4fc9e5e 02b6361 c3d33a4 42bde0f f727381 ed99f53 f727381 1a04091 a623f18 b0a9ec2 70800b1 1a04091 f727381 1a04091 888d672 1a04091 7c514bb 1a04091 9b17066 888d672 ed99f53 888d672 0ea2c0e 45d0b80 20fac9c 60b0804 20fac9c 60b0804 20fac9c 60b0804 1a04091 5672cc2 45d0b80 42bde0f ba17d2e 70800b1 f727381 45d0b80 5672cc2 6d8fee1 6851a9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteria
import gradio as gr
import spaces
import torch
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
from PIL import Image, ExifTags
import cv2
import numpy as np
import torch
from html2image import Html2Image
import tempfile
import os
import uuid
from scipy.ndimage import gaussian_filter
from threading import Thread
import re
import time
from PIL import Image
import torch
import spaces
import subprocess
import os
from moviepy.editor import VideoFileClip, AudioFileClip
import multiprocessing
import imageio
import tqdm
from concurrent.futures import ProcessPoolExecutor
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
from PIL import Image, ImageDraw, ImageFont
import textwrap
import uuid
import os
def generate_text_image_with_pil(old_text, input_token, new_token, image_width=400, min_height=1000, font_size=16):
import textwrap
import numpy as np
from PIL import Image, ImageDraw, ImageFont
# Split text by newlines first to preserve manual line breaks
paragraphs = old_text.split('\n')
# Add the token information to the last paragraph
input_token = input_token.replace("\n","\\n")
new_token = new_token.replace("\n","\\n")
if paragraphs:
paragraphs[-1] += f"[{input_token}]→[{new_token}]"
else:
paragraphs = [f"[{input_token}]→[{new_token}]"]
# Create a list to store all wrapped lines
all_lines = []
# Process each paragraph separately
for paragraph in paragraphs:
# Only wrap if paragraph is not empty
if paragraph.strip():
wrapped_lines = textwrap.wrap(paragraph, width=60)
all_lines.extend(wrapped_lines)
else:
# Add an empty line for empty paragraphs (newlines)
all_lines.append("")
# Create image
img = Image.new('RGB', (image_width, min_height), color='white')
draw = ImageDraw.Draw(img)
# Load font
font_path = "NotoSansCJK-Bold.ttc"
font = ImageFont.truetype(font_path, font_size)
# Draw text
y = 10
token_marker = f"[{input_token}]→[{new_token}]"
for line in all_lines:
if token_marker in line:
parts = line.split(token_marker)
# Draw text before token
draw.text((10, y), parts[0], fill="black", font=font)
x = 10 + draw.textlength(parts[0], font=font)
# Draw input token in blue
draw.text((x, y), f"[{input_token}]", fill="blue", font=font)
x += draw.textlength(f"[{input_token}]", font=font)
# Draw arrow
draw.text((x, y), "→", fill="black", font=font)
x += draw.textlength("→", font=font)
# Draw new token in red
draw.text((x, y), f"[{new_token}]", fill="red", font=font)
# Draw remainder text if any
if len(parts) > 1 and parts[1]:
x += draw.textlength(f"[{new_token}]", font=font)
draw.text((x, y), parts[1], fill="black", font=font)
else:
print(token_marker)
print(line)
draw.text((10, y), line, fill="black", font=font)
# Move to next line, adding extra space between paragraphs
y += font_size + 8
return np.array(img)
from PIL import Image, ImageDraw, ImageFont
def render_next_token_table_image(table_data, predict_token, image_width=500, row_height=40, font_size=14):
# Cài đặt font hỗ trợ đa ngôn ngữ (sửa đường dẫn nếu cần)
font_path = "NotoSansCJK-Bold.ttc"
font = ImageFont.truetype(font_path, font_size)
num_rows = len(table_data) + 2 # +2 cho phần tiêu đề
num_cols = 4 # Layer | Top1 | Top2 | Top3
table_width = image_width
col_width = table_width // num_cols
table_height = num_rows * row_height
# Tạo ảnh trắng
img = Image.new("RGB", (table_width, table_height), "white")
draw = ImageDraw.Draw(img)
def draw_cell(x, y, text, color="black", bold=False):
if bold:
draw.text((x + 5, y + 5), text, font=font, fill=color)
else:
draw.text((x + 5, y + 5), text, font=font, fill=color)
# Vẽ hàng tiêu đề chính
draw.rectangle([0, 0, table_width, row_height], outline="black")
draw_cell(5, 5, "Hidden states per Transformer layer (LLM) for Prediction", bold=True)
# Vẽ tiêu đề cột
headers = ["Layer ⬆️", "Top 1", "Top 2", "Top 3"]
for col, header in enumerate(headers):
x0 = col * col_width
y0 = row_height
draw.rectangle([x0, y0, x0 + col_width, y0 + row_height], outline="black")
draw_cell(x0, y0, header, bold=True)
# Vẽ từng hàng layer
for i, (layer_index, tokens) in enumerate(table_data):
y = (i + 2) * row_height
for col in range(num_cols):
x = col * col_width
draw.rectangle([x, y, x + col_width, y + row_height], outline="black")
if col == 0:
draw_cell(x, y, f"Layer {layer_index+1}", bold=True)
else:
if col - 1 < len(tokens):
token_str, prob = tokens[col - 1]
# Thay \n bằng chuỗi "\\n"
token_str = token_str
color = "red" if token_str == predict_token and col == 1 else "blue" if col == 1 else "black"
bold = token_str == predict_token and col == 1
if token_str.count(" ") == 1 and len(token_str) != 1:
token_str_ = token_str.replace("\n", "\\n").replace("\t", "\\t")
else:
token_str_ = token_str.replace("\n", "\\n").replace(" ", "\\s").replace("\t", "\\t")
draw_cell(x, y, f"{token_str_} ({prob:.1%})", color=color, bold=bold)
return np.array(img)
torch.set_default_device('cuda')
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images, target_aspect_ratio
def correct_image_orientation(image_path):
# Mở ảnh
image = Image.open(image_path)
# Kiểm tra dữ liệu Exif (nếu có)
try:
exif = image._getexif()
if exif is not None:
for tag, value in exif.items():
if ExifTags.TAGS.get(tag) == "Orientation":
# Sửa hướng dựa trên Orientation
if value == 3:
image = image.rotate(180, expand=True)
elif value == 6:
image = image.rotate(-90, expand=True)
elif value == 8:
image = image.rotate(90, expand=True)
break
except Exception as e:
print("Không thể xử lý Exif:", e)
return image
def load_image(image_file, input_size=448, max_num=12, target_aspect_ratio=False):
image = correct_image_orientation(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images, target_aspect_ratio = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
if target_aspect_ratio:
return pixel_values, target_aspect_ratio
else:
return pixel_values
def visualize_attention_hiddenstate(attention_tensor, head=None, start_img_token_index=0, end_img_token_index=0, target_aspect_ratio=(0,0)):
"""Vẽ heatmap của attention scores từ trung bình 8 layer cuối và trả về top 5 token có attention cao nhất."""
last_8_layers = attention_tensor[-8:] # Lấy 8 layer cuối
averaged_layer = np.mean(last_8_layers,axis=0) # Trung bình 8 layer cuối
if head is None:
averaged_attention = averaged_layer.mean(axis=1) # Trung bình qua các head
else:
averaged_attention = averaged_layer[:, head, :, :] # Chọn head cụ thể
heat_maps = []
top_5_tokens = []
for i in range(len(averaged_attention)): # Duyệt qua các beam
h_target_aspect_ratio = target_aspect_ratio[1] if target_aspect_ratio[1] != 0 else 1
w_target_aspect_ratio = target_aspect_ratio[0] if target_aspect_ratio[0] != 0 else 1
img_atten_score = averaged_attention[i].reshape(-1)[start_img_token_index:end_img_token_index]
# Lấy index của 5 token có attention cao nhất
top_5_indices = np.argsort(img_atten_score)[-5:][::-1] # Sắp xếp giảm dần
top_5_values = img_atten_score[top_5_indices]
# top_5_tokens.append(list(zip(top_5_indices + start_img_token_index, top_5_values)))
top_5_tokens.append(list(top_5_indices + start_img_token_index))
# Reshape lại attention để vẽ heatmap
img_atten_score = img_atten_score.reshape(h_target_aspect_ratio, w_target_aspect_ratio, 16, 16)
img_atten_score = np.transpose(img_atten_score, (0, 2, 1, 3)).reshape(h_target_aspect_ratio * 16, w_target_aspect_ratio * 16)
img_atten_score = np.power(img_atten_score, 0.9)
heat_maps.append(img_atten_score)
return heat_maps, top_5_tokens
# def adjust_overlay(overlay, text_img):
# h_o, w_o = overlay.shape[:2]
# h_t, w_t = text_img.shape[:2]
# if h_o > w_o: # Overlay là ảnh đứng
# # Resize overlay sao cho h = h_t, giữ nguyên tỷ lệ
# new_h = h_t
# new_w = int(w_o * (new_h / h_o))
# overlay_resized = cv2.resize(overlay, (new_w, new_h))
# else: # Overlay là ảnh ngang
# # Giữ nguyên overlay, nhưng nếu h < h_t thì thêm padding trắng
# overlay_resized = overlay.copy()
# # Thêm padding trắng nếu overlay có h < h_t
# if overlay_resized.shape[0] < h_t:
# pad_h = h_t - overlay_resized.shape[0]
# padding = np.ones((pad_h, overlay_resized.shape[1], 3), dtype=np.uint8) * 255
# overlay_resized = np.vstack((overlay_resized, padding)) # Padding vào dưới
# # Đảm bảo overlay có cùng chiều cao với text_img
# if overlay_resized.shape[0] != h_t:
# overlay_resized = cv2.resize(overlay_resized, (overlay_resized.shape[1], h_t))
# return overlay_resized
def adjust_overlay(overlay, text_img):
h_o, w_o = overlay.shape[:2]
h_t, w_t = text_img.shape[:2]
# Resize overlay sao cho chiều ngang <= 500, chiều dọc <= 1000 (giữ nguyên tỉ lệ)
scale = min(500 / w_o, 1000 / h_o, 1.0) # không phóng to quá kích thước gốc
new_w = int(w_o * scale)
new_h = int(h_o * scale)
overlay_resized = cv2.resize(overlay, (new_w, new_h))
# Nếu overlay nhỏ hơn chiều cao của text_img thì thêm padding trắng bên dưới
if overlay_resized.shape[0] < h_t:
pad_h = h_t - overlay_resized.shape[0]
padding = np.ones((pad_h, overlay_resized.shape[1], 3), dtype=np.uint8) * 255
overlay_resized = np.vstack((overlay_resized, padding))
return overlay_resized
def extract_next_token_table_data(model, tokenizer, response, index_focus):
next_token_table = []
for layer_index in range(len(response.hidden_states[index_focus])):
h_out = model.language_model.lm_head(
model.language_model.model.norm(response.hidden_states[index_focus][layer_index][0])
)
h_out = torch.softmax(h_out, -1)
top_tokens = []
for token_index in h_out.argsort(descending=True)[0, :3]: # Top 3
token_str = tokenizer.decode(token_index)
prob = float(h_out[0, int(token_index)])
top_tokens.append((token_str, prob))
next_token_table.append((layer_index, top_tokens))
next_token_table = next_token_table[::-1]
return next_token_table
model = AutoModel.from_pretrained(
"khang119966/Vintern-1B-v3_5-explainableAI",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True,
use_flash_attn=False,
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained("khang119966/Vintern-1B-v3_5-explainableAI", trust_remote_code=True, use_fast=False)
def generate_text_img_wrapper(args):
return generate_text_image_with_pil(*args, image_width=500, min_height=1000)
def generate_hidden_img_wrapper(args):
return render_next_token_table_image(*args)
@spaces.GPU(duration=120)
def generate_video(image, prompt, max_tokens):
print(image)
pixel_values, target_aspect_ratio = load_image(image, max_num=6)
pixel_values = pixel_values.to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens= int(max_tokens), do_sample=False, num_beams = 3, repetition_penalty=2.5)
response, query = model.chat(tokenizer, pixel_values, '<image>\n'+prompt, generation_config, return_history=False, \
attention_visualize=True,last_visualize_layers=7,raw_image_path=image,target_aspect_ratio=target_aspect_ratio)
###### GET GOOD BEAM #####
response_attentions_list = []
response_hidden_states_list = []
for index in range(len(response.beam_indices[0])):
beam_indice = response.beam_indices[0][index]
layer_response_attentions_list = []
layer_response_hidden_states_list = []
for layer_index in range(len(response.attentions[index])):
layer_response_attentions_list.append(torch.unsqueeze(response.attentions[index][layer_index][beam_indice],0))
layer_response_hidden_states_list.append(torch.unsqueeze(response.hidden_states[index][layer_index][beam_indice],0))
response_attentions_list.append(layer_response_attentions_list)
response_hidden_states_list.append(layer_response_hidden_states_list)
response.attentions = response_attentions_list
response.hidden_states = response_hidden_states_list
generation_output = response
raw_image_path = image
attentions_tensors = []
for tok_ in generation_output["attentions"]:
attentions_tensors.append([])
for lay_ in tok_ :
attentions_tensors[-1].append(lay_.detach().cpu().type(torch.float).numpy())
attention_scores = attentions_tensors
query_ = tokenizer(query)
start_img_token_index = int(np.where(np.array(query_["input_ids"])==tokenizer("<img>")["input_ids"][0])[0]+1)
end_img_token_index = int(np.where(np.array(query_["input_ids"])==tokenizer("</img>")["input_ids"][0])[0]-256)
if end_img_token_index - start_img_token_index == 0 :
end_img_token_index = int(np.where(np.array(query_["input_ids"])==tokenizer("</img>")["input_ids"][0])[0])
# Đọc ảnh gốc
image = cv2.imread(raw_image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Resize ảnh nhỏ hơn để giảm dung lượng GIF
scale_factor = 1. # Giảm 50% kích thước
alpha = 0.4
# Lưu danh sách frames GIF
visualization_frames = []
# Chuỗi sinh ra
generated_text = ""
frame_step = 1
input_token = ""
params_for_text = []
params_for_hidden = []
heatmap_imgs = []
top_visual_tokens_focus_tables = []
# Lặp qua từng token
for index_focus in tqdm.tqdm(range(0, generation_output.sequences.shape[1], frame_step)):
predict_token_text = tokenizer.decode(generation_output.sequences[0, index_focus])
generated_text += predict_token_text # Ghép chữ lại
# Tạo heatmap trung bình từ các lớp attention
heat_maps, top_visual_tokens_focus = visualize_attention_hiddenstate(attention_scores[index_focus], head=None,
start_img_token_index=start_img_token_index, end_img_token_index=end_img_token_index,
target_aspect_ratio=target_aspect_ratio)
heatmap = np.array(heat_maps[0])
# Resize heatmap về kích thước ảnh gốc
heatmap = cv2.resize(heatmap, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_CUBIC)
# Làm mượt heatmap
heatmap_smooth = gaussian_filter(heatmap, sigma=1)
# Chuẩn hóa heatmap về 0-255
heatmap_norm = cv2.normalize(heatmap_smooth, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)
heatmap_color = cv2.applyColorMap(heatmap_norm, cv2.COLORMAP_JET)
heatmap_color = cv2.cvtColor(heatmap_color, cv2.COLOR_BGR2RGB)
# Overlay ảnh heatmap lên ảnh gốc
overlay = cv2.addWeighted(image, 1 - alpha, heatmap_color, alpha, 0)
prev_text = generated_text[:-len(input_token)-len(predict_token_text)]
params_for_text.append((prev_text, input_token, predict_token_text))
hidden_tabel = extract_next_token_table_data(model, tokenizer, generation_output, index_focus)
params_for_hidden.append((hidden_tabel,predict_token_text))
input_token = predict_token_text
heatmap_imgs.append(overlay)
# Dùng multiprocessing
# with multiprocessing.Pool(processes=20) as pool:
# with ProcessPoolExecutor(max_workers=20) as pool:
# ctx = multiprocessing.get_context()
# ctx.Process(target=lambda: None).daemon = False
# with ctx.Pool(processes=20) as pool:
# text_imgs = pool.map(generate_text_img_wrapper, params_for_text)
# hidden_imgs = pool.map(generate_hidden_img_wrapper, params_for_hidden)
text_imgs = []
for param in tqdm.tqdm(params_for_text):
result = generate_text_img_wrapper(param)
text_imgs.append(result)
hidden_imgs = []
for param in tqdm.tqdm(params_for_hidden):
result = generate_hidden_img_wrapper(param)
hidden_imgs.append(result)
for i in range(len(text_imgs)):
overlay = heatmap_imgs[i]
text_img = text_imgs[i]
predict_hidden_states = hidden_imgs[i]
overlay_adjusted = adjust_overlay(overlay, text_img)
predict_hidden_states = adjust_overlay(predict_hidden_states, text_img)
combined_image = np.hstack((overlay_adjusted, text_img, predict_hidden_states))
visualization_frames.append(combined_image)
resized_visualization_frames = []
for frame in visualization_frames:
frame = cv2.resize(frame,(visualization_frames[0].shape[1],visualization_frames[0].shape[0]))
resized_visualization_frames.append(frame)
# Lưu thành video MP4 bằng imageio
imageio.mimsave(
'heatmap_animation.mp4',
resized_visualization_frames, # dạng RGB
fps=5
)
# Nối video và nhạc
video = VideoFileClip("heatmap_animation.mp4")
audio = AudioFileClip("legacy-of-the-century-background-cinematic-music-for-video-46-second-319542.mp3").set_duration(video.duration)
final = video.set_audio(audio)
final.write_videofile("heatmap_with_music.mp4", codec="libx264", audio_codec="aac", ffmpeg_params=["-pix_fmt", "yuv420p"])
return "heatmap_with_music.mp4"
with gr.Blocks() as demo:
gr.Markdown("""# 🎥 Visualizing How Multimodal Models Think
- This tool generates a video to **visualize how a multimodal model (image + text)** attends to different parts of an image while generating text.
📌 What it does: - Takes an input image and a text prompt. - Shows how the model’s attention shifts on the image for each generated token. - Helps explain the model’s behavior and decision-making.
🖼️ Video layout (per frame): Each frame in the video includes: 1. 🔥 **Heatmap over image**: Shows which area the model focuses on. 2. 📝 **Generated text**: With old context, current token highlighted. 3. 📊 **Token prediction table**: Shows the model’s top next-token guesses.
""")
with gr.Row():
with gr.Column():
image = gr.Image(label="Upload your image", type = 'filepath')
prompt = gr.Textbox(label="Describe your prompt", value="List all the text." )
max_tokens = gr.Slider(label="Max token output (⚠️ Choose <100 for faster response)", minimum=1, maximum=256, value=50)
btn = gr.Button("Inference")
video = gr.Video(label="Visualization Video")
btn.click(fn=generate_video, inputs=[image, prompt, max_tokens], outputs=video)
if __name__ == "__main__":
demo.launch() |