File size: 23,321 Bytes
0ea2c0e
35a9ed4
0ea2c0e
35a9ed4
0ea2c0e
 
 
 
 
 
 
 
8d20c43
45d0b80
 
 
 
 
 
 
 
0ea2c0e
 
 
 
 
 
b29876f
0ea2c0e
96bcebe
1a04091
 
20fac9c
a623f18
0ea2c0e
 
 
888d672
 
 
 
b635797
888d672
 
 
 
 
 
 
 
 
1c43489
 
 
888d672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32c2424
888d672
 
 
 
 
 
 
1c43489
888d672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c43489
 
888d672
 
 
 
 
 
 
 
 
 
 
 
3538373
888d672
 
f9a358f
888d672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c43489
 
 
 
888d672
 
 
 
f9a358f
0ea2c0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45d0b80
0ea2c0e
8d20c43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45d0b80
 
8d20c43
0ea2c0e
45d0b80
0ea2c0e
 
45d0b80
 
 
 
42bde0f
 
 
 
 
 
 
c3d33a4
42bde0f
c3d33a4
42bde0f
 
 
c3d33a4
42bde0f
 
 
 
 
 
 
 
 
 
 
 
 
 
c3d33a4
42bde0f
 
 
 
c3d33a4
 
42bde0f
 
 
23191fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42bde0f
 
 
 
23191fb
 
 
 
 
42bde0f
23191fb
42bde0f
 
 
23191fb
42bde0f
 
 
23191fb
42bde0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ea2c0e
45d0b80
dcd69bb
0ea2c0e
bdee200
3d50453
19540cf
45d0b80
1a04091
 
888d672
1a04091
 
 
 
02b6361
45d0b80
ba17d2e
f727381
 
45d0b80
 
4fc9e5e
02b6361
c3d33a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42bde0f
 
 
f727381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed99f53
f727381
 
 
 
 
 
 
1a04091
 
a623f18
b0a9ec2
70800b1
 
 
 
 
 
 
 
 
 
 
 
 
 
1a04091
 
 
 
 
 
 
 
f727381
1a04091
 
 
 
888d672
1a04091
 
7c514bb
1a04091
 
 
9b17066
888d672
 
 
 
ed99f53
888d672
 
0ea2c0e
45d0b80
20fac9c
 
60b0804
20fac9c
60b0804
20fac9c
60b0804
1a04091
5672cc2
45d0b80
 
42bde0f
ba17d2e
70800b1
f727381
 
45d0b80
 
5672cc2
6d8fee1
6851a9a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteria
import gradio as gr
import spaces
import torch
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
from PIL import Image, ExifTags
import cv2
import numpy as np
import torch
from html2image import Html2Image
import tempfile
import os
import uuid
from scipy.ndimage import gaussian_filter
from threading import Thread
import re
import time 
from PIL import Image
import torch
import spaces
import subprocess
import os
from moviepy.editor import VideoFileClip, AudioFileClip
import multiprocessing
import imageio
import tqdm
from concurrent.futures import ProcessPoolExecutor

subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

from PIL import Image, ImageDraw, ImageFont
import textwrap
import uuid
import os

def generate_text_image_with_pil(old_text, input_token, new_token, image_width=400, min_height=1000, font_size=16):
    import textwrap
    import numpy as np
    from PIL import Image, ImageDraw, ImageFont
    
    # Split text by newlines first to preserve manual line breaks
    paragraphs = old_text.split('\n')
    
    # Add the token information to the last paragraph
    input_token = input_token.replace("\n","\\n")
    new_token = new_token.replace("\n","\\n")
    
    if paragraphs:
        paragraphs[-1] += f"[{input_token}]→[{new_token}]"
    else:
        paragraphs = [f"[{input_token}]→[{new_token}]"]
    
    # Create a list to store all wrapped lines
    all_lines = []
    
    # Process each paragraph separately
    for paragraph in paragraphs:
        # Only wrap if paragraph is not empty
        if paragraph.strip():
            wrapped_lines = textwrap.wrap(paragraph, width=60)
            all_lines.extend(wrapped_lines)
        else:
            # Add an empty line for empty paragraphs (newlines)
            all_lines.append("")
    
    # Create image
    img = Image.new('RGB', (image_width, min_height), color='white')
    draw = ImageDraw.Draw(img)
    
    # Load font
    font_path = "NotoSansCJK-Bold.ttc"
    font = ImageFont.truetype(font_path, font_size)
    
    # Draw text
    y = 10
    token_marker = f"[{input_token}]→[{new_token}]"
    
    for line in all_lines:
        if token_marker in line:                
            parts = line.split(token_marker)
            # Draw text before token
            draw.text((10, y), parts[0], fill="black", font=font)
            x = 10 + draw.textlength(parts[0], font=font)
            
            # Draw input token in blue
            draw.text((x, y), f"[{input_token}]", fill="blue", font=font)
            x += draw.textlength(f"[{input_token}]", font=font)
            
            # Draw arrow
            draw.text((x, y), "→", fill="black", font=font)
            x += draw.textlength("→", font=font)
            
            # Draw new token in red
            draw.text((x, y), f"[{new_token}]", fill="red", font=font)
            
            # Draw remainder text if any
            if len(parts) > 1 and parts[1]:
                x += draw.textlength(f"[{new_token}]", font=font)
                draw.text((x, y), parts[1], fill="black", font=font)
        else:
            print(token_marker)
            print(line)
            draw.text((10, y), line, fill="black", font=font)
        
        # Move to next line, adding extra space between paragraphs
        y += font_size + 8
    return np.array(img)


from PIL import Image, ImageDraw, ImageFont


def render_next_token_table_image(table_data, predict_token, image_width=500, row_height=40, font_size=14):
    # Cài đặt font hỗ trợ đa ngôn ngữ (sửa đường dẫn nếu cần)
    font_path = "NotoSansCJK-Bold.ttc"
    
    font = ImageFont.truetype(font_path, font_size)

    num_rows = len(table_data) + 2  # +2 cho phần tiêu đề
    num_cols = 4  # Layer | Top1 | Top2 | Top3
    table_width = image_width
    col_width = table_width // num_cols
    table_height = num_rows * row_height

    # Tạo ảnh trắng
    img = Image.new("RGB", (table_width, table_height), "white")
    draw = ImageDraw.Draw(img)

    def draw_cell(x, y, text, color="black", bold=False):
        if bold:
            draw.text((x + 5, y + 5), text, font=font, fill=color)
        else:
            draw.text((x + 5, y + 5), text, font=font, fill=color)

    # Vẽ hàng tiêu đề chính
    draw.rectangle([0, 0, table_width, row_height], outline="black")
    draw_cell(5, 5, "Hidden states per Transformer layer (LLM) for Prediction", bold=True)
    
    # Vẽ tiêu đề cột
    headers = ["Layer ⬆️", "Top 1", "Top 2", "Top 3"]
    for col, header in enumerate(headers):
        x0 = col * col_width
        y0 = row_height
        draw.rectangle([x0, y0, x0 + col_width, y0 + row_height], outline="black")
        draw_cell(x0, y0, header, bold=True)

    # Vẽ từng hàng layer
    for i, (layer_index, tokens) in enumerate(table_data):
        y = (i + 2) * row_height
        for col in range(num_cols):
            x = col * col_width
            draw.rectangle([x, y, x + col_width, y + row_height], outline="black")

            if col == 0:
                draw_cell(x, y, f"Layer {layer_index+1}", bold=True)
            else:
                if col - 1 < len(tokens):
                    token_str, prob = tokens[col - 1]
                    # Thay \n bằng chuỗi "\\n"
                    token_str = token_str
                    color = "red" if token_str == predict_token and col == 1 else "blue" if col == 1 else "black"
                    bold = token_str == predict_token and col == 1
                    if token_str.count(" ") ==  1 and len(token_str) != 1:
                        token_str_ = token_str.replace("\n", "\\n").replace("\t", "\\t")
                    else:
                        token_str_ = token_str.replace("\n", "\\n").replace(" ", "\\s").replace("\t", "\\t")
                    draw_cell(x, y, f"{token_str_} ({prob:.1%})", color=color, bold=bold)

    return np.array(img)
    

torch.set_default_device('cuda')


IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images, target_aspect_ratio

def correct_image_orientation(image_path):
    # Mở ảnh
    image = Image.open(image_path)

    # Kiểm tra dữ liệu Exif (nếu có)
    try:
        exif = image._getexif()
        if exif is not None:
            for tag, value in exif.items():
                if ExifTags.TAGS.get(tag) == "Orientation":
                    # Sửa hướng dựa trên Orientation
                    if value == 3:
                        image = image.rotate(180, expand=True)
                    elif value == 6:
                        image = image.rotate(-90, expand=True)
                    elif value == 8:
                        image = image.rotate(90, expand=True)
                    break
    except Exception as e:
        print("Không thể xử lý Exif:", e)

    return image

def load_image(image_file, input_size=448, max_num=12, target_aspect_ratio=False):
    image = correct_image_orientation(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images, target_aspect_ratio = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    if target_aspect_ratio:
        return pixel_values, target_aspect_ratio
    else:
        return pixel_values

def visualize_attention_hiddenstate(attention_tensor, head=None, start_img_token_index=0, end_img_token_index=0, target_aspect_ratio=(0,0)):
    """Vẽ heatmap của attention scores từ trung bình 8 layer cuối và trả về top 5 token có attention cao nhất."""
    last_8_layers = attention_tensor[-8:]  # Lấy 8 layer cuối
    averaged_layer = np.mean(last_8_layers,axis=0)  # Trung bình 8 layer cuối
    
    if head is None:
        averaged_attention = averaged_layer.mean(axis=1)  # Trung bình qua các head
    else:
        averaged_attention = averaged_layer[:, head, :, :]  # Chọn head cụ thể

    heat_maps = []
    top_5_tokens = []

    for i in range(len(averaged_attention)):  # Duyệt qua các beam
        h_target_aspect_ratio = target_aspect_ratio[1] if target_aspect_ratio[1] != 0 else 1
        w_target_aspect_ratio = target_aspect_ratio[0] if target_aspect_ratio[0] != 0 else 1

        img_atten_score = averaged_attention[i].reshape(-1)[start_img_token_index:end_img_token_index]
        
        # Lấy index của 5 token có attention cao nhất
        top_5_indices = np.argsort(img_atten_score)[-5:][::-1]  # Sắp xếp giảm dần
        top_5_values = img_atten_score[top_5_indices]
        # top_5_tokens.append(list(zip(top_5_indices + start_img_token_index, top_5_values)))
        top_5_tokens.append(list(top_5_indices + start_img_token_index))
        
        
        # Reshape lại attention để vẽ heatmap
        
        img_atten_score = img_atten_score.reshape(h_target_aspect_ratio, w_target_aspect_ratio, 16, 16)
        img_atten_score = np.transpose(img_atten_score, (0, 2, 1, 3)).reshape(h_target_aspect_ratio * 16, w_target_aspect_ratio * 16)

        img_atten_score = np.power(img_atten_score, 0.9)
    
    heat_maps.append(img_atten_score)
    
    return heat_maps, top_5_tokens

# def adjust_overlay(overlay, text_img):
#     h_o, w_o = overlay.shape[:2]
#     h_t, w_t = text_img.shape[:2]

#     if h_o > w_o:  # Overlay là ảnh đứng
#         # Resize overlay sao cho h = h_t, giữ nguyên tỷ lệ
#         new_h = h_t
#         new_w = int(w_o * (new_h / h_o))
#         overlay_resized = cv2.resize(overlay, (new_w, new_h))
#     else:  # Overlay là ảnh ngang
#         # Giữ nguyên overlay, nhưng nếu h < h_t thì thêm padding trắng
#         overlay_resized = overlay.copy()

#     # Thêm padding trắng nếu overlay có h < h_t
#     if overlay_resized.shape[0] < h_t:
#         pad_h = h_t - overlay_resized.shape[0]
#         padding = np.ones((pad_h, overlay_resized.shape[1], 3), dtype=np.uint8) * 255
#         overlay_resized = np.vstack((overlay_resized, padding))  # Padding vào dưới

#     # Đảm bảo overlay có cùng chiều cao với text_img
#     if overlay_resized.shape[0] != h_t:
#         overlay_resized = cv2.resize(overlay_resized, (overlay_resized.shape[1], h_t))

#     return overlay_resized

def adjust_overlay(overlay, text_img):
    h_o, w_o = overlay.shape[:2]
    h_t, w_t = text_img.shape[:2]

    # Resize overlay sao cho chiều ngang <= 500, chiều dọc <= 1000 (giữ nguyên tỉ lệ)
    scale = min(500 / w_o, 1000 / h_o, 1.0)  # không phóng to quá kích thước gốc
    new_w = int(w_o * scale)
    new_h = int(h_o * scale)
    overlay_resized = cv2.resize(overlay, (new_w, new_h))

    # Nếu overlay nhỏ hơn chiều cao của text_img thì thêm padding trắng bên dưới
    if overlay_resized.shape[0] < h_t:
        pad_h = h_t - overlay_resized.shape[0]
        padding = np.ones((pad_h, overlay_resized.shape[1], 3), dtype=np.uint8) * 255
        overlay_resized = np.vstack((overlay_resized, padding))

    return overlay_resized

    
def extract_next_token_table_data(model, tokenizer, response, index_focus):
    next_token_table = []
    for layer_index in range(len(response.hidden_states[index_focus])):
        h_out = model.language_model.lm_head(
            model.language_model.model.norm(response.hidden_states[index_focus][layer_index][0])
        )
        h_out = torch.softmax(h_out, -1)
        top_tokens = []
        for token_index in h_out.argsort(descending=True)[0, :3]:  # Top 3
            token_str = tokenizer.decode(token_index)
            prob = float(h_out[0, int(token_index)])
            top_tokens.append((token_str, prob))
        next_token_table.append((layer_index, top_tokens))
    next_token_table = next_token_table[::-1]
    return next_token_table

model = AutoModel.from_pretrained(
    "khang119966/Vintern-1B-v3_5-explainableAI",
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True,
    use_flash_attn=False,
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained("khang119966/Vintern-1B-v3_5-explainableAI", trust_remote_code=True, use_fast=False)

def generate_text_img_wrapper(args):
    return generate_text_image_with_pil(*args, image_width=500, min_height=1000)

def generate_hidden_img_wrapper(args):
    return render_next_token_table_image(*args)
        
@spaces.GPU(duration=120)
def generate_video(image, prompt, max_tokens):
    print(image)
    pixel_values, target_aspect_ratio = load_image(image, max_num=6)
    pixel_values = pixel_values.to(torch.bfloat16).cuda()
    generation_config = dict(max_new_tokens= int(max_tokens), do_sample=False, num_beams = 3, repetition_penalty=2.5)
    response, query = model.chat(tokenizer, pixel_values, '<image>\n'+prompt, generation_config, return_history=False, \
                            attention_visualize=True,last_visualize_layers=7,raw_image_path=image,target_aspect_ratio=target_aspect_ratio)

    ###### GET GOOD BEAM #####
    response_attentions_list = []
    response_hidden_states_list = []
    for index in range(len(response.beam_indices[0])):
        beam_indice = response.beam_indices[0][index]
        layer_response_attentions_list = []
        layer_response_hidden_states_list = []
        for layer_index in range(len(response.attentions[index])):
            layer_response_attentions_list.append(torch.unsqueeze(response.attentions[index][layer_index][beam_indice],0))
            layer_response_hidden_states_list.append(torch.unsqueeze(response.hidden_states[index][layer_index][beam_indice],0))
        response_attentions_list.append(layer_response_attentions_list)
        response_hidden_states_list.append(layer_response_hidden_states_list)
    response.attentions = response_attentions_list
    response.hidden_states = response_hidden_states_list

    generation_output = response
    raw_image_path = image

    attentions_tensors = []
    for tok_ in generation_output["attentions"]:
        attentions_tensors.append([])
        for lay_ in tok_ :
            attentions_tensors[-1].append(lay_.detach().cpu().type(torch.float).numpy())
    attention_scores = attentions_tensors
    query_ = tokenizer(query)
    start_img_token_index = int(np.where(np.array(query_["input_ids"])==tokenizer("<img>")["input_ids"][0])[0]+1)
    end_img_token_index = int(np.where(np.array(query_["input_ids"])==tokenizer("</img>")["input_ids"][0])[0]-256)
    if end_img_token_index - start_img_token_index  == 0 :
        end_img_token_index = int(np.where(np.array(query_["input_ids"])==tokenizer("</img>")["input_ids"][0])[0])
    
    # Đọc ảnh gốc
    image = cv2.imread(raw_image_path)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    # Resize ảnh nhỏ hơn để giảm dung lượng GIF
    scale_factor = 1.  # Giảm 50% kích thước
    alpha = 0.4  
    # Lưu danh sách frames GIF
    visualization_frames = []
    # Chuỗi sinh ra
    generated_text = ""
    frame_step = 1
    input_token = ""
    
    params_for_text = []
    params_for_hidden = []
    heatmap_imgs = []
    top_visual_tokens_focus_tables = []
    # Lặp qua từng token
    for index_focus in tqdm.tqdm(range(0, generation_output.sequences.shape[1], frame_step)):
        predict_token_text = tokenizer.decode(generation_output.sequences[0, index_focus])
        generated_text += predict_token_text  # Ghép chữ lại
        # Tạo heatmap trung bình từ các lớp attention
        heat_maps, top_visual_tokens_focus = visualize_attention_hiddenstate(attention_scores[index_focus], head=None, 
                                         start_img_token_index=start_img_token_index, end_img_token_index=end_img_token_index,
                                         target_aspect_ratio=target_aspect_ratio)
    
        heatmap = np.array(heat_maps[0]) 
        # Resize heatmap về kích thước ảnh gốc
        heatmap = cv2.resize(heatmap, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_CUBIC)
        # Làm mượt heatmap
        heatmap_smooth = gaussian_filter(heatmap, sigma=1)
        # Chuẩn hóa heatmap về 0-255
        heatmap_norm = cv2.normalize(heatmap_smooth, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)
        heatmap_color = cv2.applyColorMap(heatmap_norm, cv2.COLORMAP_JET)
        heatmap_color = cv2.cvtColor(heatmap_color, cv2.COLOR_BGR2RGB)
        # Overlay ảnh heatmap lên ảnh gốc
        overlay = cv2.addWeighted(image, 1 - alpha, heatmap_color, alpha, 0)
        
        prev_text = generated_text[:-len(input_token)-len(predict_token_text)] 
        params_for_text.append((prev_text, input_token, predict_token_text))
    
        hidden_tabel = extract_next_token_table_data(model, tokenizer, generation_output, index_focus)
        params_for_hidden.append((hidden_tabel,predict_token_text))
    
        input_token = predict_token_text
        heatmap_imgs.append(overlay)
    
    # Dùng multiprocessing
    # with multiprocessing.Pool(processes=20) as pool:
    # with ProcessPoolExecutor(max_workers=20) as pool:
    # ctx = multiprocessing.get_context()
    # ctx.Process(target=lambda: None).daemon = False
    # with ctx.Pool(processes=20) as pool:
    #     text_imgs = pool.map(generate_text_img_wrapper, params_for_text)
    #     hidden_imgs = pool.map(generate_hidden_img_wrapper, params_for_hidden)
    text_imgs = []
    for param in tqdm.tqdm(params_for_text):
        result = generate_text_img_wrapper(param)
        text_imgs.append(result)
    hidden_imgs = []
    for param in tqdm.tqdm(params_for_hidden):
        result = generate_hidden_img_wrapper(param)
        hidden_imgs.append(result)
        
    for i in range(len(text_imgs)):
        overlay = heatmap_imgs[i]
        text_img = text_imgs[i]
        predict_hidden_states = hidden_imgs[i]
        overlay_adjusted = adjust_overlay(overlay, text_img)
        predict_hidden_states = adjust_overlay(predict_hidden_states, text_img)
        combined_image = np.hstack((overlay_adjusted, text_img, predict_hidden_states))
        visualization_frames.append(combined_image)
        
    resized_visualization_frames = []
    for frame in visualization_frames:
        frame = cv2.resize(frame,(visualization_frames[0].shape[1],visualization_frames[0].shape[0]))
        resized_visualization_frames.append(frame)
    
    # Lưu thành video MP4 bằng imageio
    imageio.mimsave(
        'heatmap_animation.mp4',
        resized_visualization_frames,  # dạng RGB
        fps=5
    )
    
    # Nối video và nhạc
    video = VideoFileClip("heatmap_animation.mp4")
    audio = AudioFileClip("legacy-of-the-century-background-cinematic-music-for-video-46-second-319542.mp3").set_duration(video.duration)
    final = video.set_audio(audio)
    final.write_videofile("heatmap_with_music.mp4", codec="libx264", audio_codec="aac", ffmpeg_params=["-pix_fmt", "yuv420p"])
    
    return "heatmap_with_music.mp4"

with gr.Blocks() as demo:
    gr.Markdown("""# 🎥 Visualizing How Multimodal Models Think 
- This tool generates a video to **visualize how a multimodal model (image + text)** attends to different parts of an image while generating text.

📌 What it does: - Takes an input image and a text prompt. - Shows how the model’s attention shifts on the image for each generated token. - Helps explain the model’s behavior and decision-making.

🖼️ Video layout (per frame): Each frame in the video includes: 1. 🔥 **Heatmap over image**: Shows which area the model focuses on. 2. 📝 **Generated text**: With old context, current token highlighted. 3. 📊 **Token prediction table**: Shows the model’s top next-token guesses.

""")
    
    with gr.Row():
        with gr.Column():
            image = gr.Image(label="Upload your image", type = 'filepath')
            prompt = gr.Textbox(label="Describe your prompt", value="List all the text." )
            max_tokens = gr.Slider(label="Max token output (⚠️ Choose <100 for faster response)", minimum=1, maximum=256, value=50)
            btn = gr.Button("Inference")
        video = gr.Video(label="Visualization Video")

    btn.click(fn=generate_video, inputs=[image, prompt, max_tokens], outputs=video)
    
if __name__ == "__main__":
    demo.launch()